Skip to main content

Spectral Theory II: Unbounded Operators on Hilbert Spaces

  • Chapter
  • First Online:
Spectral Theory and Quantum Mechanics

Part of the book series: UNITEXT ((UNITEXTMAT,volume 110))

  • 3505 Accesses

Abstract

In this second chapter on spectral theory we shall examine a number of mathematical issues concerning typically unbounded self-adjoint operators.

The language of mathematics turns out to be unreasonably effective in natural sciences, a wonderful gift that we don’t understand nor deserve.

Eugene Paul Wigner

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More appropriately, identity (9.59) should be written \([A, A^\star ] \subset I\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valter Moretti .

Exercises

Exercises

9.1

Consider a spectral measure \(P:\varSigma ({\mathsf X}) \ni E \mapsto P(E)\in {\mathfrak B}({\mathsf H})\) and a unitary operator (isometric and onto) \(V: {\mathsf H}\rightarrow {\mathsf H}'\), where \({\mathsf H}\) is a complex Hilbert space. Prove

$$P': \varSigma ({\mathsf X}) \ni E \mapsto P'(E) := VP(E)V^{-1} \in {\mathfrak B}({\mathsf H}')$$

is a PVM.

9.2

In relationship to Exercise 9.1, prove the following facts.

(i) If \(f: {\mathsf X}\rightarrow {\mathbb C}\) is measurable then \(\psi \in \varDelta _{f}\) \(\;\Leftrightarrow \;\) \(V\psi \in \varDelta '_f\), where \(\varDelta '_f\) is the domain of the integral of f in \(P'\).

(ii) \(V\int _{{\mathsf X}} f(x) dP(x) V^{-1} = \int _{{\mathsf X}} f(x) dP'(x)\).

9.3

Prove that (iv) in Theorem 9.13(b) can be strengthened as follows: let \(T: D(T) \rightarrow {\mathsf H}\) be self-adjoint on the Hilbert space \({\mathsf H}\). Then \(\lambda \in \sigma _c(T)\) is equivalent to asking that \(0<||T\phi -\lambda \phi ||\), \(\forall \,\phi \in D(T)\) with \(||\phi ||=1\), and that for any \(\varepsilon >0\) there exists \(\phi _\varepsilon \in D(T)\), \(||\phi _\varepsilon ||=1\), such that

$$||T\phi _\varepsilon - \lambda \phi _\varepsilon || \le \varepsilon \,.$$

Hint. The second condition amounts to saying \(\lambda \) does not belong to \(\sigma _p(T)\), so \((T-\lambda I)^{-1}: Ran(T-\lambda I) \rightarrow D(T)\) exists. Then \(\lambda \in \sigma (T) = \sigma _p(T) \cup \sigma _c(T)\). Can \((T-\lambda I)^{-1}\) be bounded?

9.4

Consider the space \(L^2({\mathsf X},\mu )\) with \(\mu \) positive and finite on the Borel \(\sigma \)-algebra of a space \({\mathsf X}\). Let \(f: {\mathsf X}\rightarrow {\mathbb R}\) be an arbitrary real, measurable, and locally \(L^2\) map (i.e. \(f\cdot g \in L^2({\mathsf X}, \mu )\) for any \(g\in C_c({\mathsf X})\)). Consider the operator on \(L^2({\mathsf X},\mu )\):

$$T_f : h \mapsto f\cdot h$$

where \(D(T_f) := \{h \in L^2({\mathsf X},\mu )\,|\, f\cdot h \in L^2({\mathsf X},\mu )\}\). Prove \(T_f\) is self-adjoint. Without using Proposition 9.17 explicitly, show

$$\sigma (T_f) = \text {ess ran}(f)\,.$$

For \(f: {\mathsf X}\rightarrow {\mathbb R}\), ess ran(f) is the essential rank of the measurable map f, defined by \({\mathbb R}\ni v\in \mathrm{ran~ess} (f)\) \(\;\Leftrightarrow \;\) \(\mu \left( f^{-1}(v-\varepsilon , v+ \varepsilon ) \right) >0\) for any \(\varepsilon >0\).

Hint. The domain of \(T_f\) is dense because f is locally \(L^2\), and the self-adjointness comes from computing \(T_f^*=T_f\). The second part goes along these lines. Observe that \(\lambda \in \rho (T_f)\) \(\;\Leftrightarrow \;\) the resolvent \(R_\lambda (T_f)\) exists on \(L^2({\mathsf X},\mu )\) and is bounded, i.e. there is \(M>0\) such that \(||R_\lambda (T_f) h|| \le M\) for any unit map \(h \in L^2({\mathsf X},\mu )\). That is to say, \(\lambda \in \rho (T_f)\) if and only if:

$$\int _{{\mathsf X}} \frac{|h(x)|^2}{|f(x) -\lambda |^2} d\mu (x) < M \quad \text {for any unit}\, h \in L^2({\mathsf X},\mu )\,.$$

If \(\lambda \not \in {ess~ran} (f)\), by definition of essential rank and \(\mu ({\mathsf X}) < +\infty \) we see that the condition holds, so \(\lambda \not \in {ess~ran} (f)\) \(\Rightarrow \) \(\lambda \not \in \sigma (T_f)\). If \(\lambda \in {ess~ran} (f)\), still by definition of essential rank we may build a sequence of unit vectors \(h_n\) such that \(\int _{{\mathsf X}} \frac{|h(x)|^2}{|f(x) -\lambda |^2} d\mu (x) > 1/n^2\) for any \(n=1,2,\ldots \). Hence \(\lambda \in {ess~ran} (f)\) \(\Rightarrow \) \(\lambda \in \sigma (T_f)\).

9.5

Consider a PVM \(P: \mathscr {B}({\mathbb C}) \rightarrow {\mathsf H}\) with \({\mathsf H}\) separable. Prove \(A \in {\mathfrak B}({\mathsf H})\) has the form \(A= \int _{\mathbb C}f dP\) for some \(f\in M_b({\mathbb C})\) if and only if it commutes with every \(B\in {\mathfrak B}({\mathsf H})\) satisfying \(BP(E)=P(E)B\) for any \(E\in \mathscr {B}({\mathbb C})\).

Solution. The sufficient implication is known, so we just prove the necessary part of the equivalence. Divide supp(P) in a disjoint collection, at most countable, of bounded sets \(E_n\), and \({\mathsf H}\) in the corresponding orthogonal sum \({\mathsf H}= \oplus _{n} {\mathsf H}_n\), \({\mathsf H}_n := P(E_n)({\mathsf H})\). Every \({\mathsf H}_n\) is A-invariant, since \(AP(E_n) = P(E_n)A\) by assumption. If \(A_n := A\upharpoonright _{{\mathsf H}_n}: {\mathsf H}_n \rightarrow {\mathsf H}_n\), then \(A\psi = \sum _n A_n\psi \) for any \(\psi \in {\mathsf H}\). Moreover (see Corollary 9.42) \(A_n\) commutes with any operator in \({\mathfrak B}({\mathsf H}_n)\) that commutes with the bounded normal operator \(T_n := \int _{E_n} z dP(z)\) and its adjoint. By Theorem 9.11, \(A_n = \int _{E_n} f_n dP\) for some \(f_n \in M_b(E_n)\). Define \(f(z) := f_n(z)\) on \(z\in E_n\), for any \(z\in {\mathbb C}\). Then \(f_n \rightarrow f\) (the \(f_n\) are null outside \(E_n\)) in \(L^2({\mathbb C}, \mu _\psi )\) by dominated convergence if \(\psi \in \varDelta _f\). Therefore \(A\psi = \int _{\mathbb C}f dP\psi \) for \(\psi \in \varDelta _f\), by definition of \(\int _{\mathbb C}f dP\). As A is bounded, Corollary 9.5 implies f must be bounded, \(\varDelta _f = {\mathsf H}\) and \(A= \int _{\mathbb C}f dP\).

9.6

Let \({\mathsf H}\) be separable and \(T: {\mathscr {D}}(T) \rightarrow {\mathsf H}\) self-adjoint on \({\mathsf H}\) (not necessarily bounded). Prove that \(A\in {\mathfrak B}({\mathsf H})\) has the form \(A=f(T)\), for some \(f: {\mathbb R}\rightarrow {\mathbb C}\) measurable and bounded, if and only if A commutes with every \(B\in {\mathfrak B}({\mathsf H})\) such that \(BT \psi = TB\psi \) for any \(\psi \in {\mathscr {D}}(T)\).

Solution. If \(P^{(T)}\) is the PVM of T, \(BP^{(T)}(E) = P^{(T)}(E)B\) \(\;\Leftrightarrow \;\) \(BT\psi = TB\psi \) for any \(\psi \in {\mathscr {D}}(T)\). The claim boils down to proving \(A = \int f dP^{(T)}\), f bounded, iff A commutes with any \(B\in {\mathfrak B}({\mathsf H})\) commuting with \(P^{(T)}\). Exercise 9.5 does exactly that.

9.7

If A is the self-adjoint generator of a strongly continuous one-parameter unitary group \(U_t=e^{itA}\), prove that A is bounded (and hence it is defined on the whole Hilbert space) if and only if \(||U_t -I|| \rightarrow 0\), as \(t\rightarrow 0\).

Hint. Passing to the spectral representation of A, we have \(||U_t-I|| = ||f_t||_\infty \) where \(f_t(\lambda ) = |e^{it\lambda } -1 |\). Since \((a, b) \ni \lambda \mapsto f_t(\lambda )\) tends to 0 uniformly in \(\lambda \), as \(t \rightarrow 0\), if and only if ab are finite, the claim follows.

9.8

Consider the operators A, \(A^\star \) of Sect. 9.1.4. Prove they are closable, and

$$\sigma _p(\overline{A}) = {\mathbb C}$$

so that \(\sigma (\overline{A})= {\mathbb C}\) while \(\sigma _c(\overline{A})= \sigma _r(\overline{A})= \varnothing \).

Outline of solution. The operators are closable because they admit closed extensions, for \(A \subset (A^\star )^*\) and \(A^\star \subset A^*\). Using the Hilbert basis \(\{\psi _n\}_{n \in {\mathbb N}}\) of Sect. 9.1.4, construct explicitly an eigenvector \(\psi \in {\mathsf H}\setminus \{\mathbf{0}\}\) of \(\overline{A}\) (i.e. \(\overline{A}\psi = \lambda \psi \)) for every \(\lambda \in {\mathbb C}\setminus \{0\}\). Supposing \(\psi = \sum _{n\in {\mathbb N}} c_n \psi _n\) we may heuristically assume that \(\overline{A}\psi = \lambda \sum _{n\in {\mathbb N}} c_n \sqrt{n}\psi _{n-1}\), so that

$$c_{n+1}= \frac{c_n}{\lambda \sqrt{n+1}}\,.$$

and thus the candidate eigenvector reads

$$\psi = \sum _{n\in {\mathbb N}} \frac{c_0 \lambda ^{-n}}{ \sqrt{(n+1)!}}\psi _n\,.$$

It is easy to prove that, for \(c_0\ne 0\), the series converges to a non-zero element of \({\mathsf H}\) which belongs to \(D(\overline{A})\) and satisfies \(\overline{A} \psi = \lambda \psi \). We already know that \(\psi _0\) satisfies \(\overline{A}\psi _0 =A\psi _0=\mathbf{0}\), so \(0\in \sigma _p(\overline{A})\).

9.9

Consider the operators A, \(A^\star \) and the Hilbert basis \(\{\psi _n\}_{n\in {\mathbb N}}\) of Sect. 9.1.4. Prove that \(A^* = \overline{A}^* =\overline{A^\star }\), that

$$\overline{A} \left( \sum _{n=0}^{+\infty } c_n \psi _n \right) = \sum _{n=0}^{+\infty } \sqrt{n+1}c_{n+1} \psi _n$$

and that

$$A^* \left( \sum _{n=0}^{+\infty } c_n \psi _n \right) = \sum _{n=1}^{+\infty } \sqrt{n}c_{n-1} \psi _n\,,$$

where

$$D(\overline{A})= \left\{ \psi \in {\mathsf H}\,\left| \, \sum _{n=0}^{+\infty }(n+1)|(\psi |\psi _{n+1})|^2 <+\infty \right. \right\} $$

and

$$D(A^*)= \left\{ \psi \in {\mathsf H}\,\left| \, \sum _{n=1}^{+\infty }n|(\psi | \psi _{n-1})|^2 <+\infty \right. \right\} \,.$$

Conclude that \(D(\overline{A})=D(A^*)\).

Outline of solution. The solution mostly relies on Proposition 5.17 and on the very definition of adjoint. Apply the definition of adjoint of A and prove that \(D(A^*)\) and \(A^*\) take the form written above. Next observe that \(\overline{A} = (A^*)^*\). Then, applying the definition of adjoint, prove that \(D(\overline{A})\) and \(\overline{A}\) have the form claimed. Finally, again exploiting the definition of adjoint, demonstrate that \((A^\star )^*= \overline{A}\) and conclude that \(\overline{A^\star }= ((A^\star )^*)^* = \overline{A}^*= A^*\). The last statement is quite evident if one simply rearranges the expressions of \(D(\overline{A})\) and \(D(A^*)\) and uses \(\psi \in H\).

9.10

Consider the operators A, \(A^\star \) of Sect. 9.1.4. Prove that

$$N:= A^* \overline{A} =\overline{A^\star A}$$

is the unique self-adjoint extension of the symmetric operator N defined on the span of the vectors \(\psi _n\) satisfying \(N \psi _n = n\psi _n\) for \(n\in {\mathbb N}\). The Hilbert basis \(\{\psi _n\}_{n \in {\mathbb N}}\) is the one in Sect. 9.1.4.

9.11

Consider the operators A, \(A^\star \) of Sect. 9.1.4, prove that \(A + A^\star \) and \(i(A - A^\star )\) are essentially self-adjoint on \({\mathscr {S}}({\mathbb R})\). Next, study the relation of the closures of those operators and the self-adjoint position and momentum operators.

9.12

Consider the operators A and \(A^\star \) of Sect. 9.1.4. Compute \(e^{\overline{\alpha A + \overline{\alpha } A^\star }} \psi _n\) with \(\alpha \in {\mathbb C}\) given.

9.13

Prove Stone’s formula, valid for a self-adjoint operator \(T: D(T) \rightarrow {\mathsf H}\) with spectral measure \(P^{(T)}\) and \(b > a\). Use the weak operator topology:

$$\frac{1}{2}(P^{(T)}(\{a\}) + P^{(T)}(\{b\})) + P^{(T)}((a, b))= w-\lim _{\varepsilon \rightarrow 0^+}\frac{1}{2\pi i}\int _a^b \frac{1}{T-\lambda -i\varepsilon } - \frac{1}{T-\lambda +i\varepsilon } d \lambda \,.$$

The integral is understood in the sense of Proposition 9.31. Is the identity still valid for \(a=b\)?

Outline of solution. Define \(S(\varepsilon ) := \frac{1}{2\pi i}\int _a^b \frac{1}{T-\lambda -i\varepsilon } - \frac{1}{T-\lambda +i\varepsilon } d \lambda \). Next take \(\psi , \phi \in {\mathsf H}\) and prove that

$$(\psi |S(\varepsilon ) \phi ) = \frac{1}{2\pi i} \int _{{\mathbb R}} \left[ \int _a^b \frac{2i\varepsilon }{(\ell -\lambda )^2+ \varepsilon ^2} d\lambda \right] d\mu _{\psi ,\phi }(\ell )$$
$$= \frac{1}{\pi } \int _{{\mathbb R}}\left[ \tan ^{-1}((b -\ell )/\varepsilon ) - \tan ^{-1}((a -\ell )/\varepsilon )\right] d\mu _{\psi ,\phi }(\ell )\,. $$

Prove that, taking the limit when \(\varepsilon \rightarrow 0^+\) one obtains

$$\lim _{\varepsilon \rightarrow 0^+} (\psi |S(\varepsilon ) \phi ) = \int _{{\mathbb R}}\left[ \chi _{(a, b)}(\ell ) + \frac{1}{2} (\chi _{\{b\}}(\ell ) + \chi _{\{a\}}(\ell ))\right] d\mu _{\psi ,\phi }(\ell )$$

and conclude. The identity is generally not valid for \(a=b\): the right-hand side always vanishes while the left-hand side may not.

9.14

Prove that the result of Exercise 9.13 is valid if we use the strong operator topology:

$$ \frac{1}{2}(P^{(T)}(\{a\}) + P^{(T)}(\{b\})) + P^{(T)}((a, b))= s-\lim _{\varepsilon \rightarrow 0^+}\frac{1}{2\pi i}\int _a^b \frac{1}{T-\lambda -i\varepsilon } - \frac{1}{T-\lambda +i\varepsilon } d \lambda \,.$$

The integral is understood in the sense of Proposition 9.31.

Outline of solution. Since we already know that the convergence is weak, it suffices to show that, if \(\phi \in {\mathsf H}\),

$$\lim _{\varepsilon \rightarrow 0^+}||S(\varepsilon ) \phi ||^2 = \left| \left| \frac{1}{2}(P^{(T)}(\{a\})\phi + P^{(T)}(\{b\}))\phi + P^{(T)}((a, b))\phi \right| \right| ^2\,. $$

The left-hand side can be written as

$$\lim _{\varepsilon \rightarrow 0^+}\frac{1}{\pi } \int _{{\mathbb R}}\left| \tan ^{-1}((b -\ell )/\varepsilon ) - \tan ^{-1}((a -\ell )/\varepsilon )\right| ^2 d\mu _{\phi }(\ell )\,,$$

and the limit produces the result we want.

9.15

Consider the operator H in formula (9.66), example Sect. 9.1.4. Show that \(\rho _\beta = e^{-\beta H}\) is a well-defined trace-class operator for every \(\beta \in {\mathbb C}\), \(Re(\beta )>0\). Compute \(tr \rho _\beta \) for these values of \(\beta \). For \(A\in {\mathfrak B}({\mathsf H})\), define

$$\alpha _z(A) := e^{iz H}A e^{-iz H}\,,\quad z \in {\mathbb C}$$
$$\langle A \rangle _\beta := tr(e^{-\beta H}A)\,.$$

and finally

$$F^{(\beta )}_{AB}(z) := \langle B\alpha _z(A)\rangle _\beta \,, \quad G^{(\beta )}_{AB}(z) := \langle \alpha _z(A)B\rangle _\beta \,.$$

Prove that (i) \(F^{(\beta )}_{AB}(z)\) is an analytic function on the strip \(0< Im(z) < \beta \) and \(G^{(\beta )}_{AB}(z)\) is analytic on the strip \(-\beta< Im(z) < 0\); (ii) \(F_{AB}^{(\beta )}\) and \(G_{AB}^{(\beta )}\) are bounded, continuous functions, and they can be extended continuously to the boundaries of their strips; (iii) along the boundaries the KMS condition

$$G_{AB}^{(\beta )}(t) = F_{AB}^{(\beta )}(t+i\beta )\,$$

holds.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moretti, V. (2017). Spectral Theory II: Unbounded Operators on Hilbert Spaces. In: Spectral Theory and Quantum Mechanics. UNITEXT(), vol 110. Springer, Cham. https://doi.org/10.1007/978-3-319-70706-8_9

Download citation

Publish with us

Policies and ethics