Advertisement

Maliciously Secure Oblivious Linear Function Evaluation with Constant Overhead

  • Satrajit GhoshEmail author
  • Jesper Buus Nielsen
  • Tobias Nilges
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10624)

Abstract

In this work we consider the problem of oblivious linear function evaluation (OLE). OLE is a special case of oblivious polynomial evaluation (OPE) and deals with the oblivious evaluation of a linear function \(f(x)=ax+b\). This problem is non-trivial in the sense that the sender chooses ab and the receiver x, but the receiver may only learn f(x). We present a highly efficient and UC-secure construction of OLE in the OT-hybrid model that requires only O(1) OTs per OLE. The construction is based on noisy encodings introduced by Naor and Pinkas (STOC’99) and used for passive secure OLEs by Ishai, Prabhakaran and Sahai (TCC’09). A result asymptotically similar to ours is known by applying the IPS compiler to the mentioned passive secure OLE protocol, but our protocol provides better constants and would be considerably simpler to implement. Concretely we use only 16 OTs to generate one active secure OLE, and our protocol achieves active security by adding fairly simple checks to the passive secure protocol. We therefore believe our protocol takes an important step towards basing practical active-secure arithmetic computations on OLEs. Our result requires novel techniques that might be of independent interest. As an application we present the currently most efficient OPE construction.

References

  1. 1.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 120–129. IEEE Computer Society Press, October 2011Google Scholar
  2. 2.
    Beerliová-Trubíniová, Z., Hirt, M.: Perfectly-secure MPC with linear communication complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78524-8_13 CrossRefGoogle Scholar
  3. 3.
    Bleichenbacher, D., Nguyen, P.Q.: Noisy polynomial interpolation and noisy chinese remaindering. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 53–69. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45539-6_4 CrossRefGoogle Scholar
  4. 4.
    Boneh, D.: Finding smooth integers in short intervals using CRT decoding. In: 32nd ACM STOC, pp. 265–272. ACM Press, May 2000Google Scholar
  5. 5.
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October 2001Google Scholar
  6. 6.
    Cascudo, I., Damgård, I., David, B., Döttling, N., Nielsen, J.B.: Rate-1, linear time and additively homomorphic UC commitments. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 179–207. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53015-3_7 CrossRefGoogle Scholar
  7. 7.
    Chang, Y.-C., Lu, C.-J.: Oblivious polynomial evaluation and oblivious neural learning. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 369–384. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45682-1_22 CrossRefGoogle Scholar
  8. 8.
    Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_38 CrossRefGoogle Scholar
  9. 9.
    David, B.M., Nishimaki, R., Ranellucci, S., Tapp, A.: Generalizing efficient multiparty computation. In: Lehmann, A., Wolf, S. (eds.) ICITS 2015. LNCS, vol. 9063, pp. 15–32. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-17470-9_2 Google Scholar
  10. 10.
    Döttling, N., Kraschewski, D., Müller-Quade, J.: David and Goliath oblivious affine function evaluation - asymptotically optimal building blocks for universally composable two-party computation from a single untrusted stateful tamper-proof hardware token. Cryptology ePrint Archive, Report 2012/135 (2012). http://eprint.iacr.org/2012/135
  11. 11.
    Döttling, N., Kraschewski, D., Müller-Quade, J.: Statistically secure linear-rate dimension extension for oblivious affine function evaluation. In: Smith, A. (ed.) ICITS 2012. LNCS, vol. 7412, pp. 111–128. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32284-6_7 CrossRefGoogle Scholar
  12. 12.
    Franklin, M.K., Yung, M.: Communication complexity of secure computation (extended abstract). In: 24th ACM STOC, pp. 699–710. ACM Press, May 1992Google Scholar
  13. 13.
    Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-30576-7_17 CrossRefGoogle Scholar
  14. 14.
    Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24676-3_1 CrossRefGoogle Scholar
  15. 15.
    Ghosh, S., Nielsen, J.B., Nilges, T.: Maliciously secure oblivious linear function evaluation with constant overhead. IACR Cryptology ePrint Archive 2017, 409 (2017). http://eprint.iacr.org/2017/409
  16. 16.
    Gilboa, N.: Two party RSA key generation. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 116–129. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48405-1_8 CrossRefGoogle Scholar
  17. 17.
    Gilboa, N.: Topics in private information retrieval. Ph.D. thesis, Thesis (Doctoral)-Technion - Israel Institute of Technology, Faculty of Computer Science, Haifa (2001)Google Scholar
  18. 18.
    Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from algebraic PRFs. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 90–120. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_4 CrossRefGoogle Scholar
  19. 19.
    Hazay, C., Lindell, Y.: Efficient oblivious polynomial evaluation with simulation-based security. Cryptology ePrint Archive, Report 2009/459 (2009). http://eprint.iacr.org/2009/459
  20. 20.
    Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45146-4_9 CrossRefGoogle Scholar
  21. 21.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85174-5_32 CrossRefGoogle Scholar
  22. 22.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00457-5_18 CrossRefGoogle Scholar
  23. 23.
    Katz, J.: Universally composable multi-party computation using tamper-proof hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72540-4_7 CrossRefGoogle Scholar
  24. 24.
    Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with optimal overhead. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 724–741. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47989-6_35 CrossRefGoogle Scholar
  25. 25.
    Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure computation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 16, pp. 830–842. ACM Press, October 2016Google Scholar
  26. 26.
    Kiayias, A., Yung, M.: Cryptographic hardness based on the decoding of reed-solomon codes. IEEE Trans. Inf. Theory 54(6), 2752–2769 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kilian, J.: Founding cryptography on oblivious transfer. In: 20th ACM STOC, pp. 20–31. ACM Press, May 1988Google Scholar
  28. 28.
    Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44598-6_3 CrossRefGoogle Scholar
  29. 29.
    Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: 31st ACM STOC, pp. 245–254. ACM Press, May 1999Google Scholar
  30. 30.
    Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5), 1254–1281 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Rabin, M.O.: How to exchange secrets with oblivious transfer. Technical report TR-81, Aiken Computation Lab, Harvard University (1981)Google Scholar
  32. 32.
    Shankar, B., Srinathan, K., Rangan, C.P.: Alternative protocols for generalized oblivious transfer. In: Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha, S.K. (eds.) ICDCN 2008. LNCS, vol. 4904, pp. 304–309. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-77444-0_31 CrossRefGoogle Scholar
  33. 33.
    Tonicelli, R., Nascimento, A.C.A., Dowsley, R., Müller-Quade, J., Imai, H., Hanaoka, G., Otsuka, A.: Information-theoretically secure oblivious polynomial evaluation in the commodity-based model. Int. J. Inf. Secur. 14(1), 73–84 (2015). http://dx.doi.org/10.1007/s10207-014-0247-8
  34. 34.
    Zhu, H., Bao, F.: Augmented oblivious polynomial evaluation protocol and its applications. In: Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 222–230. Springer, Heidelberg (2005).  https://doi.org/10.1007/11555827_13 CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2017

Authors and Affiliations

  • Satrajit Ghosh
    • 1
    Email author
  • Jesper Buus Nielsen
    • 1
  • Tobias Nilges
    • 1
  1. 1.Aarhus UniversityAarhusDenmark

Personalised recommendations