Skip to main content

Physics Beyond the Standard Model

  • Chapter
  • First Online:
Scalar Boson Decays to Tau Leptons

Part of the book series: Springer Theses ((Springer Theses))

  • 276 Accesses

Abstract

The SM has been demonstrated as successful by many measurements performed at high-energy experiments. In particular, the discovery of a new particle compatible with the SM scalar boson, considered as the cornerstone of the SM, has consecrated the theory. However there are strong indications that the SM is only a low-energy expression of a more global theory. If new physics shows up beyond the SM, it could be related to the scalar sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Cabibbo-Kobayashi-Maskawa (CKM) matrix contains information about the likelihood of weak decays with flavor changing in charged currents.

References

  1. P. Ramond, Journeys Beyond the Standard Model (Perseus Books, 1999)

    Google Scholar 

  2. Y. Nagashima, Beyond the Standard Model of Elementary Particle Physics (Weinheim, Wiley, 2014), http://cds.cern.ch/record/1620277

  3. Super-Kamiokande Collaboration, Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81, 1562–1567 (1998), https://doi.org/10.1103/PhysRevLett.81.1562, arXiv:hep-ex/9807003 [hep-ex]

  4. Double Chooz Collaboration, Indication for the disappearance of reactor electron antineutrinos in the Double Chooz experiment. Phys. Rev. Lett. 108, 131801 (2012), https://doi.org/10.1103/PhysRevLett.108.131801, arXiv:1112.6353 [hep-ex]

  5. Particle Data Group, Review of particle physics. Chin. Phys. C 38, 090001 (2014), https://doi.org/10.1088/1674-1137/38/9/090001

  6. F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 6, 110–127 (1933)

    MATH  ADS  Google Scholar 

  7. Planck Collaboration, Planck 2015 results. XIII. Cosmological parameters (2015), arXiv:1502.01589 [astro-ph.CO]

  8. A.D. Sakharov, Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe. Pisma Zh. Eksp. Teor. Fiz. 5, 32–35 (1967), https://doi.org/10.1070/PU1991v034n05ABEH002497

  9. G. Burdman, New solutions to the hierarchy problem. Braz. J. Phys. 37, 506–513 (2007), https://doi.org/10.1590/S0103-97332007000400006, arXiv:hep-ph/0703194 [hep-ph]

  10. G.C. Branco et al., Theory and phenomenology of two-Higgs-doublet models. Phys. Rept. 516, 1–102 (2012), https://doi.org/10.1016/j.physrep.2012.02.002, arXiv:1106.0034 [hep-ph]

  11. J. Gunion et al., The Higgs Hunter’s Guide (Perseus Publishing, 1990)

    Google Scholar 

  12. M. Carena, H. Haber, Higgs boson theory and phenomenology. Prog. Part. Nucl. Phys. 50, 63–152 (2003), https://doi.org/10.1016/S0146-6410(02)00177-1, arXiv:hep-ph/0208209 [hep-ph]

  13. A. Djouadi. The Higgs Particles in the MSSM, http://ecole-de-gif.in2p3.fr/Cours/GIF01/djouadi.ps

  14. S.L. Glashow, S. Weinberg, Natural conservation laws for neutral currents. Phys. Rev. D 15, 1958 (1977), https://doi.org/10.1103/PhysRevD.15.1958

  15. N. Deshpande, E. Ma, Pattern of symmetry breaking with two Higgs doublets. Phys. Rev. D 18, 2574 (1978), https://doi.org/10.1103/PhysRevD.18.2574

  16. J. Gunion, H. Haber, CP-conserving two-Higgs-doublet model: The approach to the decoupling limit. Phys. Rev. D 67(2003), https://doi.org/10.1103/PhysRevD.67.075019, arXiv:0207010 [hep-ph]

  17. N. Craig, J. Galloway, S. Thomas. Searching for signs of the second Higgs doublet (2013), arXiv:1305.2424 [hep-ph]

  18. J. Bernon et al., Light Higgs bosons in two-Higgs-doublet models. Phys. Rev. D 91.7, 075019 (2015), https://doi.org/10.1103/PhysRevD.91.075019, arXiv:1412.3385 [hep-ph]

  19. S. Martin, A supersymmetry primer. Adv. Ser. Direct. High Energy Phys. 18(1) (1998), https://doi.org/10.1142/9789812839657_0001, https://doi.org/10.1142/9789814307505_0001, arXiv:hep-ph/9709356 [hep-ph]

  20. J. Wess, B. Zumino, Supergauge transformations in four-dimensions. Nucl. Phys. B 70, 39–50 (1974), https://doi.org/10.1016/0550-3213(74)90355-1

  21. P. Fayet, Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino. Nucl. Phys. B 90, 104–124 (1975), https://doi.org/10.1016/0550-3213(75)90636-7

  22. P. Fayet, Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions. Phys. Lett. B 69, 489 (1977), https://doi.org/10.1016/0370-2693(77)90852-8

  23. P. Fayet, Supersymmetry and weak, electromagnetic and strong interactions. Phys. Lett. B 64, 159 (1976), https://doi.org/10.1016/0370-2693(76)90319-1

  24. CMS Collaboration, Search for additional neutral Higgs bosons decaying to a pair of tau leptons in pp collisions at \(\sqrt{s} = 7 and 8 TeV\). CMS Physics Analysis Summary CMS-PAS-HIG-14-029 (2015), http://cdsweb.cern.ch/record/2041463

  25. A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model. Phys. Rept. 459, 1–241 (2008), https://doi.org/10.1016/j.physrep.2007.10.005, arXiv:hep-ph/0503173 [hep-ph]

  26. A. Djouadi et al., Fully covering the MSSM Higgs sector at the LHC. JHEP 06, 168 (2015), https://doi.org/10.1007/JHEP06(2015)168, arXiv:1502.05653 [hep-ph]

  27. A. Djouadi, J. Quevillon, The MSSM Higgs sector at a high MSUSY : reopening the low tan\(\beta \) regime and heavy Higgs searches. JHEP 10, 028 (2013), https://doi.org/10.1007/JHEP10(2013)028, arXiv:1304.1787 [hep-ph]

  28. J.M. Frere, D.R.T. Jones, S. Raby, Fermion masses and induction of the weak scale by supergravity. Nucl. Phys. B 222, 11–19 (1983), https://doi.org/10.1016/0550-3213(83)90606-5

  29. E. Cremmer, P. Fayet, L. Girardello, Gravity induced supersymmetry breaking and lowenergy mass spectrum. Phys. Lett. B 122, 41 (1983), https://doi.org/10.1016/0370-2693(83)91165-6

  30. U. Ellwanger, C. Hugonie, A.M. Teixeira, The Next-to-Minimal Supersymmetric Standard Model. Phys. Rept. 496, 1–77 (2010), https://doi.org/10.1016/j.physrep.2010.07.001, arXiv:0910.1785 [hep-ph]

  31. J.E. Kim, H.P. Nilles, The mu problem and the strong CP problem. Phys. Lett. B 138, 150 (1984), https://doi.org/10.1016/0370-2693(84)91890-2

  32. C. Englert et al., Exploring the Higgs portal. Phys. Lett. B 703, 298–305 (2011), https://doi.org/10.1016/j.physletb.2011.08.002, arXiv:1106.3097 [hep-ph]

  33. M. Carena et al., Complementarity between non-standard Higgs boson searches and precision Higgs boson measurements in the MSSM. Phys. Rev. D 91.3, 035003 (2015), https://doi.org/10.1103/PhysRevD.91.035003, arXiv:1410.4969 [hep-ph]

  34. D. Curtin et al., Exotic decays of the 125 GeV Higgs boson. Phys. Rev. D 90.7, 075004 (2014), https://doi.org/10.1103/PhysRevD.90.075004, arXiv:1312.4992 [hep-ph]

  35. D. Curtin, R. Essig, Y. Zhong, Uncovering light scalars with exotic Higgs decays to \(b\bar{b}\mu ^{+}\mu ^{-}\). JHEP 06, 025 (2015), https://doi.org/10.1007/JHEP06(2015)025, arXiv:1412.4779 [hep-ph]

  36. CMS Collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV. Eur. Phys. J. C75.5, 212 (2015), https://doi.org/10.1140/epjc/s10052-015-3351-7, arXiv:1412.8662 [hep-ex]

  37. CMS Collaboration, Search for a light NMSSM Higgs boson produced in supersymmetric cascades and decaying into a b-quark pair. CMS Physics Analysis Summary CMS-PAS-HIG-14-030 (2015), http://cdsweb.cern.ch/record/2002557

  38. C. Caillol et al., Precision versus discovery: A simple benchmark. Eur.Phys.J.Plus 129, 93 (2014), https://doi.org/10.1140/epjp/i2014-14093-3, arXiv:1304.0386 [hep-ph]

  39. CMS Collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV. CMS Physics Analysis Summary CMS-PAS-HIG-13-005 (2013), http://cdsweb.cern.ch/record/1542387

  40. CMS Collaboration, Search for a heavy Higgs boson in the H to ZZ to 2l2nu channel in pp collisions at \(\sqrt{s} = 7\) and 8 TeV. CMS Physics Analysis Summary CMS-PAS-HIG-13-005 (2013), http://cdsweb.cern.ch/record/1546776

  41. CMS Collaboration, Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states. JHEP 01, 096 (2014), https://doi.org/10.1007/JHEP01(2014)096, arXiv:1312.1129 [hep-ex]

  42. CMS Collaboration, Measurement of the properties of a Higgs boson in the four-lepton final state. Phys. Rev. D 89.9, 092007 (2014), https://doi.org/10.1103/PhysRevD.89.092007, arXiv:1312.5353 [hep-ex]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécile Caillol .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Caillol, C. (2018). Physics Beyond the Standard Model. In: Scalar Boson Decays to Tau Leptons. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-70650-4_2

Download citation

Publish with us

Policies and ethics