Advertisement

A Four V’s Design Approach of NoSQL Graph Databases

  • Jacky AkokaEmail author
  • Isabelle Comyn-Wattiau
  • Nicolas Prat
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10651)

Abstract

Big Data has been described as a four-dimensional model with Volume, Variety, Velocity, and Veracity. In this paper we discuss the potential of a model-driven approach (MDA) to tackle design issues of Big Data taking into account the effect of the four dimensions. Our approach considers NoSQL graph databases. The approach is applied to the case of Neo4j database. Our main contribution is an MDA methodology that enables to tackle the four V’s dimensions described above. It consists of two major steps: (i) a forward engineering approach based on MDA as well as a set of transformations rules enabling the development of a conceptual, logical, and physical model for big data encompassing the four V’s, (ii) a volume-guided approach supporting the generation of test bases dedicated to performance evaluation. We present an illustrative scenario of our forward engineering approach.

Keywords

Forward engineering Big Data NoSQL Graph database 4V’s Model-driven approach Neo4j 

References

  1. 1.
    Schroeck, M., Shockley, R., Smart, J., Romero-Morales, D., Tufano, P.: Analytics: the real-world use of big data. IBM Institute for Business Value - Executive Report (2012)Google Scholar
  2. 2.
    Llewellyn, A.: NASA Tournament Lab’s Big Data Challenge, October 2012. https://open.nasa.gov/blog/2012/10/03/nasa-tournament-labs-big-data-challenge/
  3. 3.
    Lukoianova, T., Rubin, V.L.: Veracity roadmap: is big data objective, truthful and credible? In: Advances in Classification Research Online, vol. 24(1), pp. 4–15 (2014)Google Scholar
  4. 4.
    Sänger, J., et al.: Trust and big data: a roadmap for research. In: Database and Expert Systems Applications (DEXA), pp. 278–282, September 2014Google Scholar
  5. 5.
    Aggarwal, D., Davis, K.C.: Employing graph databases as a standardization model towards addressing heterogeneity. In: 2016 IEEE 17th International Conference on Information Reuse and Integration (IRI), pp. 198–207 (2016)Google Scholar
  6. 6.
    Daniel, G., Sunyé, G., Cabot, J.: UMLtoGraphDB: mapping conceptual schemas to graph databases. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 430–444. Springer, Cham (2016). doi: 10.1007/978-3-319-46397-1_33 CrossRefGoogle Scholar
  7. 7.
    Bugiotti, F., Cabibbo, L., Atzeni, P., Torlone, R.: Database design for NoSQL systems. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8824, pp. 223–231. Springer, Cham (2014). doi: 10.1007/978-3-319-12206-9_18 Google Scholar
  8. 8.
    Sevilla Ruiz, D., Morales, S.F., García Molina, J.: Inferring versioned schemas from NoSQL databases and its applications. In: Johannesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 467–480. Springer, Cham (2015). doi: 10.1007/978-3-319-25264-3_35 CrossRefGoogle Scholar
  9. 9.
    Boulil, K., Bimonte, S., Pinet, F.: Conceptual model for spatial data cubes: a UML profile and its automatic implementation. Comput. Stand. Interfaces 38, 113–132 (2015)CrossRefGoogle Scholar
  10. 10.
    Cuzzocrea, A., do N. Fidalgo, R.: Enhancing coverage and expressive power of spatial data warehousing modeling: the SDWM approach. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2012. LNCS, vol. 7448, pp. 15–29. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32584-7_2 CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Boulil, K., Bimonte, S., Pinet, F.: Spatial OLAP integrity constraints: from UML-based specification to automatic implementation: application to energetic data in agriculture. J. Dec. Syst. 23(4), 460–480 (2014)CrossRefGoogle Scholar
  13. 13.
    Curé, O., Hecht, R., Le Duc, C., Lamolle, M.: Data integration over NoSQL stores using access path based mappings. In: Hameurlain, A., Liddle, Stephen W., Schewe, K.-D., Zhou, X. (eds.) DEXA 2011. LNCS, vol. 6860, pp. 481–495. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23088-2_36 CrossRefGoogle Scholar
  14. 14.
    Abdelhedi, F., Brahim, A.A., Atigui, F., Zurfluh, G.: Big data and knowledge management: how to implement conceptual models in NoSQL systems? In: Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, Porto, Portugal, pp. 235–240 (2016)Google Scholar
  15. 15.
    Prat, N., Akoka, J., Comyn-Wattiau, I.: An MDA approach to knowledge engineering. Expert Syst. Appl. 39(12), 10420–10437 (2012)CrossRefGoogle Scholar
  16. 16.
    Bouhali, R., Laurent, A.: Exploiting RDF open data using NoSQL graph databases. In: Chbeir, R., Manolopoulos, Y., Maglogiannis, I., Alhajj, R. (eds.) AIAI 2015. IAICT, vol. 458, pp. 177–190. Springer, Cham (2015). doi: 10.1007/978-3-319-23868-5_13 CrossRefGoogle Scholar
  17. 17.
    Zhu, Y., Yan, E., Song, I.Y.: The use of a graph-based system to improve bibliographic information retrieval: system design, implementation, and evaluation. J. Assoc. Inf. Sci. Technol. 68(2), 480–490 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jacky Akoka
    • 1
    Email author
  • Isabelle Comyn-Wattiau
    • 2
  • Nicolas Prat
    • 2
  1. 1.CEDRIC-CNAM & TEM-Institut Mines TelecomParisFrance
  2. 2.ESSEC Business SchoolCergy-PontoiseFrance

Personalised recommendations