Advertisement

Towards Care Systems Using Model-Driven Adaptation and Monitoring of Autonomous Multi-clouds

  • Andreea BugaEmail author
  • Sorana Tania Nemeş
  • Klaus-Dieter Schewe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10651)

Abstract

In cloud computing, the ability to run and manage multi-cloud systems allows exploiting the peculiarities of each cloud solution and hence optimising the performance, availability, and cost of the applications. In this paper, we investigate the use case of a robotic care system as an application of autonomous multi-clouds. We present requirements and properties of an Abstract State Machines-based conceptual model that coordinates the multi-cloud interaction through the specification of a middleware exploiting adaptive interfaces to multiple clouds and supporting various service formats. While the multi-cloud system is running in normal mode, data about the execution will be gathered and evaluated by the monitoring component, and in case any critical situation is discovered the adaptation component is alerted. We show that for the care system this can be fruitfully exploited for failure alerts, failure anticipation and prevention, and safety hazards detection.

References

  1. 1.
    Börger, E., Stark, R.F.: Abstract State Machines: A Method for High-Level System Design and Analysis. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-642-18216-7 CrossRefzbMATHGoogle Scholar
  2. 2.
    Bósa, K.: Formal modeling of mobile computing systems based on ambient Abstract State Machines. SDKB 2011. LNCS, vol. 7693, pp. 18–49. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-36008-4_2 CrossRefGoogle Scholar
  3. 3.
    Bósa, K.: An ambient ASM model for client-to-client interaction via cloud computing. In: Proceedings of the 8th International Conference on Software and Data Technologies (ICSOFT), pp. 459–470. SciTePress (2013)Google Scholar
  4. 4.
    Bósa, K., Holom, R.M., Vleju, M.B.: A formal model of client-cloud interaction. In: Thalheim, B., Schewe, K.D., Prinz, A., Buchberger, B. (eds.) Correct Software in Web Applications and Web Services, pp. 83–144. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-17112-8_4 Google Scholar
  5. 5.
    Buga, A., Nemeş, S.T.: A formal approach for failure detection in large-scale distributed systems using Abstract State Machines. In: Benslimane, D., Damiani, E., Grosky, W.I., Hameurlain, A., Sheth, A., Wagner, R.R. (eds.) DEXA 2017. LNCS, vol. 10438, pp. 505–513. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-64468-4_38 CrossRefGoogle Scholar
  6. 6.
    Buga, A., Nemeş, S.T., Schewe, K.D.: Conceptual modelling of autonomous multi-cloud interaction with reflective semantics. In: Guizzardi, G., Ma, H., Mayr, H.C. (eds.) Conceptual Modeling - 36th International Conference (ER 2017). LNCS, Springer (2017, to appear)Google Scholar
  7. 7.
    Buga, A., Nemes, S.T.: Towards modeling monitoring of smart traffic services in a large-scale distributed system. In: Proceedings of the 7th International Conference on Cloud Computing and Services Science - Volume 1: CLOSER, pp. 483–490. INSTICC, ScitePress (2017)Google Scholar
  8. 8.
    Calzarossa, M., Della Vedova, M.L., Massari, L., Petcu, D., Tabash, M.I.M., Tessera, D.: Workloads in the clouds. In: Fiondella, L., Puliafito, A. (eds.) Principles of Performance and Reliability Modeling and Evaluation. Reliability Engineering. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-30599-8_20 Google Scholar
  9. 9.
    Calzarossa, M., Massari, L., Tessera, D.: Workload characterization: a survey revisited. ACM Comput. Surv. 48(3), 48:1–48:43 (2016)CrossRefGoogle Scholar
  10. 10.
    Cheng, B.H.C., de Lemor, R., Giese, H., Inverardi, P., Magee, J. (eds.): Software Engineering for Self-Adaptive Systems. Programming and Software Engineering, vol. 5525. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02161-9 Google Scholar
  11. 11.
    Gross, H.M., Schroeter, C., Mueller, S., Volkhardt, M., Einhorn, E., Bley, A., Martin, C., Langner, T., Merten, M.: Progress in developing a socially assistive mobile home robot companion for the elderly with mild cognitive impairment. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2430–2437, September 2011Google Scholar
  12. 12.
    Lampesberger, H., Rady, M.: Monitoring of client-cloud interaction. In: Thalheim, B., Schewe, K.D., Prinz, A., Buchberger, B. (eds.) Correct Software in Web Applications and Web Services, pp. 177–228. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-17112-8_6 CrossRefGoogle Scholar
  13. 13.
    Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Algebr. Program. 78(5), 293–303 (2009)CrossRefzbMATHGoogle Scholar
  14. 14.
    Ma, H., Schewe, K.D., Thalheim, B., Wang, Q.: A theory of data-intensive software services. SOCA 3(4), 263–283 (2009)CrossRefGoogle Scholar
  15. 15.
    Ma, H., Schewe, K.D., Thalheim, B., Wang, Q.: A formal model for the interoperability of service clouds. SOCA 6(3), 189–205 (2012)CrossRefGoogle Scholar
  16. 16.
    Mirandola, R., Potena, P., Scandurra, P.: An optimization process for adaptation space exploration of service-oriented applications. In: Proceedings of the 6th IEEE International Symposium on Service-Oriented System Engineering (SOSE 2011), pp. 146–151. IEEE (2011)Google Scholar
  17. 17.
    Nemeş, S.T., Buga, A.: Towards a case-based reasoning approach to dynamic adaptation for large-scale distributed systems. In: Aha, D.W., Lieber, J. (eds.) ICCBR 2017. LNCS (LNAI), vol. 10339, pp. 257–271. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61030-6_18 CrossRefGoogle Scholar
  18. 18.
    Nemes, S.T., Buga, A.: Towards modeling adaptation services for large-scale distributed systems with abstract state machines. In: Shishkov, B. (ed.) Business Modeling and Software Design - 7th International Symposium, Proceedings, BMSD 2017, Barcelona, Spain, 3–5 July 2017, pp. 193–198. Springer (2017)Google Scholar
  19. 19.
    Shin, K.S., Jung, J.H., Cheon, J.Y., Choi, S.B.: Real-time network monitoring scheme based on SNMP for dynamic information. J. Netw. Comput. Appl. 30(1), 331–353 (2007)CrossRefGoogle Scholar
  20. 20.
    Zeng, W., Wang, Y.: Design and implementation of server monitoring system based on SNMP. In: JCAI, pp. 680–682 (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Andreea Buga
    • 1
    Email author
  • Sorana Tania Nemeş
    • 1
  • Klaus-Dieter Schewe
    • 1
  1. 1.Johannes-Kepler-University LinzLinzAustria

Personalised recommendations