Advertisement

Data Modelling for Dynamic Monitoring of Vital Signs: Challenges and Perspectives

  • Natalija KozminaEmail author
  • Emil Syundyukov
  • Aleksejs Kozmins
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10651)

Abstract

The use-case described in this paper covers data acquisition and real-time analysis of the gathered medical data from wearable sensor system. Accumulated data is essential for monitoring vital signs and tracking the dynamics of the treatment process of disabled patients or patients undergoing the recovery after traumatic knee joint injury (e.g. post-operative rehabilitation). The main goal of employing the wearable sensor system is to conduct rehabilitation process more effectively and increase the rate of successful rehabilitation. The results of data analysis of patient’s vital signs and feedback allow a physiotherapist to adjust the rehabilitation scenario on the fly. In this paper, we focus on the methodology for data modelling with a purpose to design a computer-aided rehabilitation system that would support agility of changing information requirements by being flexible and augmentable.

Keywords

Knee joint Rehabilitation Real-time monitoring Data modelling 

References

  1. 1.
    American Academy of Orthopaedics: Common Knee Injuries. http://orthoinfo.aaos.org/topic.cfm?topic=a00325. Accessed 10 June 2017
  2. 2.
    Bergmann, J.H.M., et al.: An attachable clothing sensor system for measuring knee joint angles. Sensors 13(10), 4090–4097 (2013)CrossRefGoogle Scholar
  3. 3.
    Pasa, L., Visna, P.: Suture of meniscus. Scr. Med. (Brno) 78(3), 135–150 (2005)Google Scholar
  4. 4.
    Kuhn, H.H., Kimbrell, W.C.J.: Electrically conductive textile materials and method for making same. Patent US4803096, USA, 7 February 1989Google Scholar
  5. 5.
    Foody, J., et al.: A prototype sourceless kinematic-feedback based video game for movement based exercise. In: Proceedings of IEEE International Conference on Engineering in Medicine and Biology Society, vol. 1, p. 5366 (2006)Google Scholar
  6. 6.
    Matsubara, M., et al.: The effectiveness of auditory biofeedback on a tracking task for ankle joint movements in rehabilitation. In: Proceedings of ISon 2013, Fraunhofer IIS, Germany, pp. 81–86 (2013)Google Scholar
  7. 7.
    Yamada, T., et al.: A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6, 296–301 (2011)CrossRefGoogle Scholar
  8. 8.
    Guo, Y., et al.: A low-cost body inertial-sensing network for practical gait discrimination of hemiplegia patients. Telemed. E-Health 18(10), 748–754 (2012)CrossRefGoogle Scholar
  9. 9.
    Raya, C., et al.: KneeMeasurer. A wearable interface for joint angle measurements. In: Proceedings of DRT4all, pp. 89–96 (2007)Google Scholar
  10. 10.
    Chen, K., et al.: Wearable sensor-based rehabilitation exercise assessment for knee osteoarthritis. Sensors 15(2), 4193–4211 (2015)CrossRefGoogle Scholar
  11. 11.
    Seel, T., Raisch, J., Schauer, T.: IMU-based joint angle measurement for gait analysis. Sensors 14(4), 6891–6909 (2014)CrossRefGoogle Scholar
  12. 12.
    Daponte, P., et al.: Design and validation of a motion-tracking system for ROM measurements in home rehabilitation. Measurement 55, 82–96 (2014)CrossRefGoogle Scholar
  13. 13.
    Yurtman, A., Barshan, B.: Automated evaluation of physical therapy exercises using multi-template dynamic time warping on wearable sensor signals. Comput. Methods Programs Biomed. 117(2), 189–207 (2014)CrossRefGoogle Scholar
  14. 14.
    Riaz, Q.: Human Motion Analysis Using Very Few Inertial Measurement Units. Bonn, Germany (2015). http://hss.ulb.uni-bonn.de/2016/4243/4243.pdf. Accessed 10 June 2017
  15. 15.
    Hermanis, A., et al.: Demo: wearable sensor system for human biomechanics monitoring. In: Proceedings of EWSN 2016, pp. 247–248. Junction Publishing, Canada (2016)Google Scholar
  16. 16.
    van der Lans, R.F.: Developing a bi-modal logical data warehouse architecture using data virtualization (2016). Denodo whitepapers http://www.denodo.com/en/document/whitepaper/developing-bimodal-logical-data-warehouse-architecture-using-data-virtualization. Accessed 10 June 2017
  17. 17.
    Mesaglio, M., Mingay, S.: Bimodal IT: how to be digitally agile without making a mess (2014). Gartner https://www.gartner.com/doc/2798217/bimodal-it-digitally-agile-making. Accessed 10 June 2017
  18. 18.
    Jovanovic, V., Bojicic, I.: Conceptual data vault model. In: Proceedings of SAIS 2012, vol. 22 (2012)Google Scholar
  19. 19.
    Linstedt, D.: Data vault basics. Dan Linstedt https://danlinstedt.com/solutions-2/data-vault-basics/. Accessed 10 June 2017
  20. 20.
    Inmon, W.H., Linstedt, D.: Data Architecture: A Primer for the Data Scientist - Big Data, Data Warehouse and Data Vault. Morgan Kaufmann, 378p. (2015)Google Scholar
  21. 21.
    Krneta, D., Jovanovic, V., Marjanovic, Z.: A direct approach to physical data vault design. Comput. Sci. Inf. Syst. 11(2), 569–599 (2014)CrossRefGoogle Scholar
  22. 22.
    Linstedt, D., Olschimke, M.: Building a Scalable Data Warehouse with Data Vault 2.0. Morgan Kaufmann, 684p. (2015)Google Scholar
  23. 23.
    Golfarelli, M., Graziani, S., Rizzi, S.: Starry vault: automating multidimensional modeling from data vaults. In: Pokorný, J., Ivanović, M., Thalheim, B., Šaloun, P. (eds.) ADBIS 2016. LNCS, vol. 9809, pp. 137–151. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-44039-2_10 CrossRefGoogle Scholar
  24. 24.
    Pezzini, M., et al.: Hybrid transaction/analytical processing will foster opportunities for dramatic business innovation (2014). Gartner https://www.gartner.com/doc/2657815/hybrid-transactionanalytical-processing-foster-opportunities. Accessed 10 June 2017

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Natalija Kozmina
    • 1
    Email author
  • Emil Syundyukov
    • 1
  • Aleksejs Kozmins
    • 2
  1. 1.Faculty of ComputingUniversity of LatviaRigaLatvia
  2. 2.Accenture LatviaRigaLatvia

Personalised recommendations