Advertisement

Assisting Process Modeling by Identifying Business Process Elements in Natural Language Texts

  • Renato César Borges Ferreira
  • Lucinéia Heloisa ThomEmail author
  • José Palazzo Moreira de Oliveira
  • Diego Toralles Avila
  • Rubens Ideron dos Santos
  • Marcelo Fantinato
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10651)

Abstract

Process modeling plays a significant role in the business process lifecycle, as it must stress the quality of process models for supporting all the next steps. However, this phase is time consuming and expensive, a consequence of the huge amount of unstructured input information. In a previous research, we presented an approach for identifying business process elements in natural language texts which facilitate the modeler’s work. Such approach relies on a set of mapping rules associated with natural language processing techniques. The identification itself was already validated, but how to apply this information to minimize the modelers’ effort remains unclear. Highlighting the identified rules in the text can enhance its comprehensibility. This paper explores the applicability of such mapping rules on supporting the modeler by marked up texts. The validation shows promising results, as the time spent and effort perceived by the modeler were both minimized.

Keywords

Process models Natural language processing Process element Business process management Business process model and notation Process modeling 

References

  1. 1.
    Dumas, M., La, R.M., Jan, M., Reijers, H.A.: Fundamentals of Business Process Management. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Frederiks, P.J.M., van der Weide, T.P.: Information modeling: The process and the required competencies of its participants. Data Knowl. Eng. 58(1), 4–20 (2006)CrossRefGoogle Scholar
  3. 3.
    Blumberg, R., Atre, S.: The problem with unstructured data. DM Review (2003)Google Scholar
  4. 4.
    White, M.: Information overlook, vol. 26, p. 7 (2003)Google Scholar
  5. 5.
    Leopold, H.: Natural Language in Business Process Models. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Meitz, M., Leopold, H., Mendling, J.: An approach to support process model validation based on text generation 33, 7–20 (2013)Google Scholar
  7. 7.
    Leopold, H., Mendling, J., Polyvyanyy, A.: Supporting process model validation through natural language generation. IEEE Trans. Softw. Eng. 40(8), 818–840 (2014)CrossRefGoogle Scholar
  8. 8.
    Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natural language text. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 482–496. Springer, Heidelberg (2011)Google Scholar
  9. 9.
    Ferreira, R.C.B., Thom, L.H.: Uma abordagem para gerar texto orientado a processo a partir de texto em linguagem natural. In: XII Brazilian Symposium on Information Systems, vol. 77 (2016)Google Scholar
  10. 10.
    Ferreira, R.C.B., Thom, L.H., Fantinato, M.: A semi-automatic approach to identify business process elements in natural language texts. In: Proceedings of the 19th International Conference on Enterprise Information Systems. To appear (2017)Google Scholar
  11. 11.
    Santoro, F.M., Gonçalves, J.C.A., Baiao, F.A.: Business process mining from group stories. In: International Conference on Computer Supported Cooperative Work in Design, pp. 161–166 (2009)Google Scholar
  12. 12.
    Gonçalves, J.C.A., Santoro, F.M., Baiao, F.A.: Let me tell you a story - on how to build process models. J. Univ. Comput. Sci. 17, 276–295 (2011)Google Scholar
  13. 13.
    van der Aa, H., Leopold, H., Reijers, H.A.: Detecting inconsistencies between process models and textual descriptions. In: Motahari-Nezhad, H., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 90–105. Springer, Cham (2015)CrossRefGoogle Scholar
  14. 14.
    van der Aa, H., Leopold, H., Reijers, H.A.: Dealing with behavioral ambiguity in textual process descriptions. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 271–288. Springer, Cham (2016)CrossRefGoogle Scholar
  15. 15.
    Li, J., Wang, H.J., Zhang, Z., Zhao, J.L.: A policy-based process mining framework mining business policy texts for discovering process models. Inf. Syst. E-Bus. Manage. 8(2), 169–188 (2010)CrossRefGoogle Scholar
  16. 16.
    Choi, J.D., Palmer, M.: Guidelines for the Clear Style Constituent to Dependency Conversion. Technical Report 01–12, University of Colorado Boulder (2012)Google Scholar
  17. 17.
    Weske, M.: Business Process Management. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    OMG: Business process modeling notation (bpmn). versão 2.0.2 (2013)Google Scholar
  19. 19.
    Mendling, J., Neumann, G., van der Aalst, W.: Understanding the occurrence of errors in process models based on metrics. In: Meersman, R., Tari, Z. (eds.) OTM 2007. LNCS, vol. 4803, pp. 113–130. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-76848-7_9 CrossRefGoogle Scholar
  20. 20.
    Figl, K., Recker, J., Mendling, J.: A study on the effects of routing symbol design on process model comprehension. Decis. Support Syst. 54(2), 1104–1118 (2013)CrossRefGoogle Scholar
  21. 21.
    Kossak, F., Illibauer, C., Geist, V.: Event-based gateways: open questions and inconsistencies. In: Mendling, J., Weidlich, M. (eds.) BPMN 2012. LNBIP, vol. 125, pp. 53–67. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33155-8_5 CrossRefGoogle Scholar
  22. 22.
    Kindler, E.: On the semantics of epcs: Resolving the vicious circle. Data Knowl. Eng. 56(1), 23–40 (2006)CrossRefGoogle Scholar
  23. 23.
    Mendling, J., Reijers, H.A., van der Aalst, W.M.P.: Seven process modeling guidelines (7PMG). Inf. Softw. Technol. 52(2), 127–136 (2010)CrossRefGoogle Scholar
  24. 24.
    Mendling, J., Reijers, H.A., Recker, J.: Activity labeling in process modeling: Empirical insights and recommendations. Inf. Syst. 35(4), 467–482 (2010)CrossRefGoogle Scholar
  25. 25.
    Likert, R.: A Technique for the Measurement of Attitudes. Number Nº 136–165 in A Technique for the Measurement of Attitudes. publisher not identified (1932)Google Scholar
  26. 26.
    Mendling, J., Strembeck, M., Recker, J.C.: Factors of process model comprehension: findings from a series of experiments. Decis. Support Syst. 53(1), 195–206 (2012)CrossRefGoogle Scholar
  27. 27.
    Mendling, J., Reijers, H.A., Cardoso, J.: What makes process models understandable? In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 48–63. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  28. 28.
    Schrepfer, M., Wolf, J., Mendling, J., Reijers, H.A.: The impact of secondary notation on process model understanding. In: Persson, A., Stirna, J. (eds.) PoEM 2009. LNBIP, vol. 39, pp. 161–175. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-05352-8_13 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Renato César Borges Ferreira
    • 1
  • Lucinéia Heloisa Thom
    • 1
    Email author
  • José Palazzo Moreira de Oliveira
    • 1
  • Diego Toralles Avila
    • 1
  • Rubens Ideron dos Santos
    • 1
  • Marcelo Fantinato
    • 2
  1. 1.Institute of InformaticsFederal University of Rio Grande do SulPorto AlegreBrazil
  2. 2.School of Arts, Sciences and HumanitiesUniversity of São PauloSão PauloBrazil

Personalised recommendations