Towards an Ontology for Strategic Decision Making: The Case of Quality in Rapid Software Development Projects

  • Cristina GómezEmail author
  • Claudia Ayala
  • Xavier Franch
  • Lidia López
  • Woubshet Behutiye
  • Silverio Martínez-Fernández
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10651)


Strategic decision making is the process of selecting a logical and informed choice from the alternative options based on key strategic indicators determining the success of a specific organization strategy. To support this process and provide a common underlying language, in this work, we present an empirically-grounded ontology to support different strategic decision-making processes and extend the ontology to cover the context of managing quality in Rapid Software Development projects. We illustrate the complete ontology with an example.


Rapid Software Development Strategic decision-making Ontology 



This work is a result of the Q-Rapids project, which has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement N° 732253. We thank to Q-Rapids industrial partners for participating in our empirical studies to develop the presented ontologies.


  1. 1.
    Kaplan, R.S., Norton, D.P., Dorf, R.C., Raitanen, M.: The Balanced Scorecard: Translating Strategy into Action, vol. 4. Harvard Business School Press, Boston (1996)Google Scholar
  2. 2.
    Object Management Group: Business Motivation Model (BMM) 1.3 (2015). Accessed Apr 2017
  3. 3.
    Barone, D., Mylopoulos, J., Jiang, L., Amyot, D.: The Business Intelligence Model: Strategic Modelling (Version 1.0). Accessed July 2017Google Scholar
  4. 4.
    Diamantini, C., Potena, D., Storti, E., Zhang, H.: An ontology-based data exploration tool for key performance indicators. In: Meersman, R., Panetto, H., Dillon, T., Missikoff, M., Liu, L., Pastor, O., Cuzzocrea, A., Sellis, T. (eds.) OTM 2014. LNCS, vol. 8841, pp. 727–744. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-45563-0_45 Google Scholar
  5. 5.
    Maté, A., Zoumpatianos, K., Palpanas, T., Trujillo, J.C., Mylopoulos, J., Koci, E.: A systematic approach for dynamic targeted monitoring of KPIs. In: Proceedings of the 24th Annual International Conference on Computer Science and Software Engineering, pp. 192–206. IBM Corp. (2014)Google Scholar
  6. 6.
    Maté, A., Trujillo, J.C., Mylopoulos, J.: Specification and derivation of key performance indicators for business analytics: A semantic approach. Data Knowl. Eng. 108, 30–49 (2017)CrossRefGoogle Scholar
  7. 7.
    Object Management Group: Decision Model and Notation (DMN) 1.1 (2016). Accessed Apr 2017
  8. 8.
    Guzmán, L., Oriol, M., Rodríguez, P., Franch, X., Jedlitschka, A., Oivo, M.: How can quality awareness support rapid software development? – a research preview. In: Grünbacher, P., Perini, A. (eds.) REFSQ 2017. LNCS, vol. 10153, pp. 167–173. Springer, Cham (2017). doi: 10.1007/978-3-319-54045-0_12 CrossRefGoogle Scholar
  9. 9.
    Basili, V., et al.: Aligning Organizations Through Measurement - The GQM + Strategies Approach. Springer, Heidelberg (2014)Google Scholar
  10. 10.
    Fernández-López, M., Gómez-Pérez, A., Juristo, N.: METHONTOLOGY: From ontological art towards ontological engineering. In: AAAI-97 Spring Symposium Series. Stanford University, USA, 24–26 March 1997Google Scholar
  11. 11.
    Cranefield, S.: Networked knowledge representation and exchange using UML and RDF. J. Digit. Inf. 1(8) (2001).
  12. 12.
    Wagner, S., Lochmann, K., Winter, S., Deissenboeck, F., Juergens, E., Herrmannsdoerfer, M., Heinemann, L., Kläs, M., Tendowicz, A., Heidrich, J., Ploesch, R., Goeb, A., Koerner, C., Schoder, K., Streit, J., Schubert, C.: The Quamoco quality meta-model. Technical Report TUM-I1281, Technische Universität MünchenGoogle Scholar
  13. 13.
    International Standardization Organization/International Electrotechnical Commission. 9000: 2005. Quality management systems-Fundamentals and vocabulary (2005)Google Scholar
  14. 14.
    International Standardization Organization/International Electrotechnical Commission. 12207: 2008. Systems and software engineering–Software life cycle processes (2008)Google Scholar
  15. 15.
    International Standardization Organization/International Electrotechnical Commission. 26515. Systems and software engineering - Developing user documentation in an agile environment. First edition 01 December 2011, Corrected version 15 March 2012 (2012)Google Scholar
  16. 16.
    Mäntylä, M.V., Adams, B., Khomh, F., Engström, E., Petersen, K.: On rapid releases and software testing: a case study and a semi-systematic literature review. Empirical Softw. Eng. 20, 1384 (2015). doi: 10.1007/s10664-014-9338-4 CrossRefGoogle Scholar
  17. 17.
    Fitzgerald, B., Stol, K.J.: Continuous software engineering: A roadmap and agenda. J. Syst. Softw. 123, 176–189 (2017)CrossRefGoogle Scholar
  18. 18.
    Leffingwell, D.: Agile Software Requirements: Lean Requirements Practices for Teams, Programs, and the Enterprise. Addison-Wesley Professional (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Cristina Gómez
    • 1
    Email author
  • Claudia Ayala
    • 1
  • Xavier Franch
    • 1
  • Lidia López
    • 1
  • Woubshet Behutiye
    • 2
  • Silverio Martínez-Fernández
    • 3
  1. 1.Universitat Politècnica de Catalunya (UPC)BarcelonaSpain
  2. 2.University of OuluOuluFinland
  3. 3.Fraunhofer IESEKaiserslauternGermany

Personalised recommendations