Skip to main content

Combined Immunotherapy with Conventional Cancer Treatments

  • Chapter
  • First Online:
  • 2352 Accesses

Abstract

Novel cancer immunotherapies targeting the immunosuppressive PD-1/PD-L1 pathway result in a durable clinical benefit in a subset of patients; however, primary or acquired resistance is common, affecting up to two-thirds of the patients with various tumor types (Ribas et al., JAMA 315:1600–1609, 2016). Therefore, a substantial effort is currently underway to fully elucidate the mechanisms of resistance to immune checkpoint blockade and to design more effective therapeutic strategies. Conventional anticancer treatments, including chemotherapy, radiation therapy, and targeted therapy, execute anticancer activity through direct cancer cell killing. Recent appreciation of the immune-regulatory effects of these therapy modalities have led to the exploration of their utilization in combination with immune checkpoint inhibitors, aiming to achieve synergetic effects to improve the response and durability of immunotherapy. In this chapter, we will review the immunomodulatory effects of these conventional cancer treatments and their impacts on reshaping modern cancer immunotherapy. The ongoing clinical trials of these combination therapies and their results will be briefly discussed here, since they are also reviewed in other sections of this book. The combination of different immunotherapy agents, such as PD-1 antibody in combination with CTLA-4 antibody, is not a focus here, but is discussed in the overview and other disease-specific chapters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   37.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alizadeh, D., & Larmonier, N. (2014). Chemotherapeutic targeting of cancer-induced immunosuppressive cells. Cancer Research, 74, 2663–2668.

    Article  Google Scholar 

  • Antonia, S. J., Villegas, A., Daniel, D., Vicente, D., Murakami, S., Hui, R., Yokoi, T., Chiappori, A., Lee, K. H., De Wit, M., Cho, B. C., Bourhaba, M., Quantin, X., Tokito, T., Mekhail, T., Planchard, D., Kim, Y. C., Karapetis, C. S., Hiret, S., Ostoros, G., Kubota, K., Gray, J. E., Paz-Ares, L., De Castro Carpeno, J., Wadsworth, C., Melillo, G., Jiang, H., Huang, Y., Dennis, P. A., Ozguroglu, M., & Investigators, P. (2017). Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. The New England Journal of Medicine, 377, 1919–1929.

    Google Scholar 

  • Barker, C. A., Postow, M. A., Khan, S. A., Beal, K., Parhar, P. K., Yamada, Y., Lee, N. Y., & Wolchok, J. D. (2013). Concurrent radiotherapy and ipilimumab immunotherapy for patients with melanoma. Cancer Immunology Research, 1, 92–98.

    Article  Google Scholar 

  • Barker, H. E., Paget, J. T., Khan, A. A., & Harrington, K. J. (2015). The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nature Reviews. Cancer, 15, 409–425.

    Article  Google Scholar 

  • Bunt, S. K., Yang, L., Sinha, P., Clements, V. K., Leips, J., & Ostrand-Rosenberg, S. (2007). Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Research, 67, 10019–10026.

    Article  Google Scholar 

  • Camidge, R., Liu, S. V., Powderly, J., Ready, N., Hodi, S., Gettinger, S. N., Giaccone, G., Liu, B., Wallin, J., Funke, R., Waterkamp, D., & Heist, R. (2015). Atezolizumab (MPDL3280A) combined with platinum-based chemotherapy in Non-Small Cell Lung Cancer (NSCLC): A Phase Ib Safety and Efficacy Update. Journal of Thoracic Oncology, 10, S176–S177.

    Google Scholar 

  • Chen, M. L., Yan, B. S., Lu, W. C., Chen, M. H., Yu, S. L., Yang, P. C., & Cheng, A. L. (2014). Sorafenib relieves cell-intrinsic and cell-extrinsic inhibitions of effector T cells in tumor microenvironment to augment anti-tumor immunity. International Journal of Cancer, 134, 319–331.

    Article  Google Scholar 

  • Cooper, Z. A., Juneja, V. R., Sage, P. T., Frederick, D. T., Piris, A., Mitra, D., Lo, J. A., Hodi, F. S., Freeman, G. J., Bosenberg, M. W., Mcmahon, M., Flaherty, K. T., Fisher, D. E., Sharpe, A. H., & Wargo, J. A. (2014). Response to BRAF inhibition in melanoma is enhanced when combined with immune checkpoint blockade. Cancer Immunology Research, 2, 643–654.

    Article  Google Scholar 

  • Demaria, S., Kawashima, N., Yang, A. M., Devitt, M. L., Babb, J. S., Allison, J. P., & Formenti, S. C. (2005). Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clinical Cancer Research, 11, 728–734.

    Google Scholar 

  • Deng, L., Liang, H., Burnette, B., Beckett, M., Darga, T., Weichselbaum, R. R., & Fu, Y. X. (2014). Irradiation and anti-PD-L1 treatment synergistically promote anti-tumor immunity in mice. The Journal of Clinical Investigation, 124, 687–695.

    Article  Google Scholar 

  • Flaherty, K. T., Lee, S. J., Zhao, F., Schuchter, L. M., Flaherty, L., Kefford, R., Atkins, M. B., Leming, P., & Kirkwood, J. M. (2013). Phase III trial of carboplatin and paclitaxel with or without sorafenib in metastatic melanoma. Journal of Clinical Oncology, 31, 373–379.

    Article  Google Scholar 

  • Gabrilovich, D. I., & Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews. Immunology, 9, 162–174.

    Article  Google Scholar 

  • Gajewski, T. F. (2006). Identifying and overcoming immune resistance mechanisms in the melanoma tumor microenvironment. Clinical Cancer Research, 12, 2326s–2330s.

    Article  Google Scholar 

  • Gajewski, T. F., Meng, Y., Blank, C., Brown, I., Kacha, A., Kline, J., & Harlin, H. (2006). Immune resistance orchestrated by the tumor microenvironment. Immunological Reviews, 213, 131–145.

    Article  Google Scholar 

  • Gameiro, S. R., Ardiani, A., Kwilas, A., & Hodge, J. W. (2014). Radiation-induced survival responses promote immunogenic modulation to enhance immunotherapy in combinatorial regimens. Oncoimmunology, 3, e28643.

    Article  Google Scholar 

  • Ghiringhelli, F., Menard, C., Puig, P. E., Ladoire, S., Roux, S., Martin, F., Solary, E., Le Cesne, A., Zitvogel, L., & Chauffert, B. (2007). Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunology, Immunotherapy, 56, 641–648.

    Article  Google Scholar 

  • Gupta, A., Probst, H. C., Vuong, V., Landshammer, A., Muth, S., Yagita, H., Schwendener, R., Pruschy, M., Knuth, A., & Van Den Broek, M. (2012). Radiotherapy promotes tumor-specific effector CD8+ T cells via dendritic cell activation. Journal of Immunology, 189, 558–566.

    Article  Google Scholar 

  • Haabeth, O. A., Lorvik, K. B., Hammarstrom, C., Donaldson, I. M., Haraldsen, G., Bogen, B., & Corthay, A. (2011). Inflammation driven by tumour-specific Th1 cells protects against B-cell cancer. Nature Communications, 2, 240.

    Article  Google Scholar 

  • Herter-Sprie, G. S., Koyama, S., Korideck, H., Hai, J., Deng, J., Li, Y. Y., Buczkowski, K. A., Grant, A. K., Ullas, S., Rhee, K., Cavanaugh, J. D., Neupane, N. P., Christensen, C. L., Herter, J. M., Makrigiorgos, G. M., Hodi, F. S., Freeman, G. J., Dranoff, G., Hammerman, P. S., Kimmelman, A. C., & Wong, K. K. (2016). Synergy of radiotherapy and PD-1 blockade in Kras-mutant lung cancer. JCI Insight, 1, e87415.

    Article  Google Scholar 

  • Hodi, F. S., Lawrence, D., Lezcano, C., Wu, X., Zhou, J., Sasada, T., Zeng, W., Giobbie-Hurder, A., Atkins, M. B., Ibrahim, N., Friedlander, P., Flaherty, K. T., Murphy, G. F., Rodig, S., Velazquez, E. F., Mihm, M. C., Jr., Russell, S., Dipiro, P. J., Yap, J. T., Ramaiya, N., Van Den Abbeele, A. D., Gargano, M., & Mcdermott, D. (2014). Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunology Research, 2, 632–642.

    Article  Google Scholar 

  • Huang, J., Wang, L., Cong, Z., Amoozgar, Z., Kiner, E., Xing, D., Orsulic, S., Matulonis, U., & Goldberg, M. S. (2015). The PARP1 inhibitor BMN 673 exhibits immunoregulatory effects in a Brca1(−/−) murine model of ovarian cancer. Biochemical and Biophysical Research Communications, 463, 551–556.

    Article  Google Scholar 

  • Kim, J. Y., Son, Y. O., Park, S. W., Bae, J. H., Chung, J. S., Kim, H. H., Chung, B. S., Kim, S. H., & Kang, C. D. (2006). Increase of NKG2D ligands and sensitivity to NK cell-mediated cytotoxicity of tumor cells by heat shock and ionizing radiation. Experimental & Molecular Medicine, 38, 474–484.

    Article  Google Scholar 

  • Klug, F., Prakash, H., Huber, P. E., Seibel, T., Bender, N., Halama, N., Pfirschke, C., Voss, R. H., Timke, C., Umansky, L., Klapproth, K., Schakel, K., Garbi, N., Jager, D., Weitz, J., Schmitz-Winnenthal, H., Hammerling, G. J., & Beckhove, P. (2013). Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell, 24, 589–602.

    Article  Google Scholar 

  • Knight, D. A., Ngiow, S. F., Li, M., Parmenter, T., Mok, S., Cass, A., Haynes, N. M., Kinross, K., Yagita, H., Koya, R. C., Graeber, T. G., Ribas, A., Mcarthur, G. A., & Smyth, M. J. (2013). Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. The Journal of Clinical Investigation, 123, 1371–1381.

    Article  Google Scholar 

  • Langer, C. J., Gadgeel, S. M., Borghaei, H., Papadimitrakopoulou, V. A., Patnaik, A., Powell, S. F., Gentzler, R. D., Martins, R. G., Stevenson, J. P., Jalal, S. I., Panwalkar, A., Yang, J. C., Gubens, M., Sequist, L. V., Awad, M. M., Fiore, J., Ge, Y., Raftopoulos, H., Gandhi, L., & Investigators, K. (2016). Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: A randomised, phase 2 cohort of the open-label KEYNOTE-021 study. The Lancet Oncology, 17, 1497–1508.

    Article  Google Scholar 

  • Lee, J. M., Cimino-Mathews, A., Peer, C. J., Zimmer, A., Lipkowitz, S., Annunziata, C. M., Cao, L., Harrell, M. I., Swisher, E., Houston, N., Botesteanu, D. A., Taube, J. M., Thompson, E., Ogurtsova, A., Xu, H. Y., Nguyen, J., Ho, T. W., Figg, W. D., & Kohn, E. C. (2017). Safety and clinical activity of the programmed death-ligand 1 inhibitor durvalumab in combination with Poly (ADP-Ribose) polymerase inhibitor olaparib or vascular endothelial growth factor receptor 1-3 inhibitor cediranib in women’s cancers: A dose-escalation, phase I study. Journal of Clinical Oncology, 35, 2193–2202.

    Article  Google Scholar 

  • Manning, E. A., Ullman, J. G., Leatherman, J. M., Asquith, J. M., Hansen, T. R., Armstrong, T. D., Hicklin, D. J., Jaffee, E. M., & Emens, L. A. (2007). A vascular endothelial growth factor receptor-2 inhibitor enhances anti-tumor immunity through an immune-based mechanism. Clinical Cancer Research, 13, 3951–3959.

    Article  Google Scholar 

  • Matsumura, S., Wang, B., Kawashima, N., Braunstein, S., Badura, M., Cameron, T. O., Babb, J. S., Schneider, R. J., Formenti, S. C., Dustin, M. L., & Demaria, S. (2008). Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. Journal of Immunology, 181, 3099–3107.

    Article  Google Scholar 

  • Nevala, W. K., Vachon, C. M., Leontovich, A. A., Scott, C. G., Thompson, M. A., Markovic, S. N., & Melanoma Study Group Of The Mayo Clinic Cancer, C. (2009). Evidence of systemic Th2-driven chronic inflammation in patients with metastatic melanoma. Clinical Cancer Research, 15, 1931–1939.

    Article  Google Scholar 

  • Reits, E. A., Hodge, J. W., Herberts, C. A., Groothuis, T. A., Chakraborty, M., Wansley, E. K., Camphausen, K., Luiten, R. M., De Ru, A. H., Neijssen, J., Griekspoor, A., Mesman, E., Verreck, F. A., Spits, H., Schlom, J., Van veelen, P., & Neefjes, J. J. (2006). Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful anti-tumor immunotherapy. The Journal of Experimental Medicine, 203, 1259–1271.

    Article  Google Scholar 

  • Ribas, A., Hamid, O., Daud, A., Hodi, F. S., Wolchok, J. D., Kefford, R., Joshua, A. M., Patnaik, A., Hwu, W. J., Weber, J. S., Gangadhar, T. C., Hersey, P., Dronca, R., Joseph, R. W., Zarour, H., Chmielowski, B., Lawrence, D. P., Algazi, A., Rizvi, N. A., Hoffner, B., Mateus, C., Gergich, K., Lindia, J. A., Giannotti, M., Li, X. N., Ebbinghaus, S., Kang, S. P., & Robert, C. (2016). Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA, 315, 1600–1609.

    Article  Google Scholar 

  • Rizvi, N. A., Hellmann, M. D., Brahmer, J. R., Juergens, R. A., Borghaei, H., Gettinger, S., Chow, L. Q., Gerber, D. E., Laurie, S. A., Goldman, J. W., Shepherd, F. A., Chen, A. C., Shen, Y., Nathan, F. E., Harbison, C. T., & Antonia, S. (2016). Nivolumab in combination with platinum-based doublet chemotherapy for first-line treatment of advanced non-small-cell lung cancer. Journal of Clinical Oncology, 34, 2969–2979.

    Article  Google Scholar 

  • Sampson, J. H., Aldape, K. D., Archer, G. E., Coan, A., Desjardins, A., Friedman, A. H., Friedman, H. S., Gilbert, M. R., Herndon, J. E., Mclendon, R. E., Mitchell, D. A., Reardon, D. A., Sawaya, R., Schmittling, R., Shi, W., Vredenburgh, J. J., Bigner, D. D., & Heimberger, A. B. (2011). Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro-Oncology, 13, 324–333.

    Article  Google Scholar 

  • Shaverdian, N., Lisberg, A. E., Bornazyan, K., Veruttipong, D., Goldman, J. W., Formenti, S. C., Garon, E. B., & Lee, P. (2017). Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: A secondary analysis of the KEYNOTE-001 phase 1 trial. The Lancet Oncology, 18, 895–903.

    Article  Google Scholar 

  • Terme, M., Pernot, S., Marcheteau, E., Sandoval, F., Benhamouda, N., Colussi, O., Dubreuil, O., Carpentier, A. F., Tartour, E., & Taieb, J. (2013). VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Research, 73, 539–549.

    Article  Google Scholar 

  • Williams, K. M., Hakim, F. T., & Gress, R. E. (2007). T cell immune reconstitution following lymphodepletion. Seminars in Immunology, 19, 318–330.

    Article  Google Scholar 

  • Wilmott, J. S., Long, G. V., Howle, J. R., Haydu, L. E., Sharma, R. N., Thompson, J. F., Kefford, R. F., Hersey, P., & Scolyer, R. A. (2012). Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clinical Cancer Research, 18, 1386–1394.

    Article  Google Scholar 

  • Yan, Y., Failing, J., Leontovich, A. A., Block, M. S., Mcwilliams, R. R., Kottschade, L. A., Dronca, R. S., & Markovic, S. (2016). The Mayo Clinic experience in patients with metastatic melanoma who have failed previous pembrolizumab treatment. ASCO Meeting Abstracts, 34, e21014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yan, Y. (2018). Combined Immunotherapy with Conventional Cancer Treatments. In: Dong, H., Markovic, S. (eds) The Basics of Cancer Immunotherapy. Springer, Cham. https://doi.org/10.1007/978-3-319-70622-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70622-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70621-4

  • Online ISBN: 978-3-319-70622-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics