Metakaolin

  • F. Wang
  • K. Kovler
  • J. L. Provis
  • A. Buchwald
  • M. Cyr
  • C. Patapy
  • S. Kamali-Bernard
  • L. Courard
  • K. Sideris
Chapter
Part of the RILEM State-of-the-Art Reports book series (RILEM State Art Reports, volume 25)

Abstract

Metakaolin (MK) is known to be a highly pozzolanic material that can be used in concrete. MK is usually produced by heating kaolin-containing clays, within the temperature range of about 600–900 ℃. This chapter summarizes the utilization of metakaolin in relevant worldwide standards, mainly in Europe and North America. The health, safety and environmental sustainability concerns on using metakaolin as a supplementary cementitious material are also addressed in this chapter. It is reported that MK incorporation has benefits on both early-age and long-term properties. On the other hand, this chapter also reports that the results of heat of hydration and rate of reaction in metakaolin-blended concrete are controversial and need further investigation. Overall, the optimum level of cement replacement by MK is around 10–20%, which provides concrete the maximum strength. Metakaolin appears to have an excellent potential as a supplementary cementitious material in structures made of high-performance concrete, because it controls deleterious expansion due to alkali-silica reaction in concrete (depending on the nature of the aggregate), and reduces the ingress of chloride by improving the microstructure and chloride binding behavior.

Keywords

Metakaolin High-performance concrete Supplementary cementitious material Properties Sustainability 

References

  1. ACI Committee 232 (2012) Use of Raw or Processed Natural Pozzolans in Concrete, ACI 232. 1R-12. Farmington Hills, MIGoogle Scholar
  2. Al-Akhras NM (2006) Durability of metakaolin concrete to sulfate attack. Cem Concr Res 36:1727–1734CrossRefGoogle Scholar
  3. Ambroise J, Maximilien S, Pera J (1994) Properties of metakaolin blended cements. Adv Cem Based Mater 1:161–168CrossRefGoogle Scholar
  4. Andriolo FR, Sgaraboza BC (1986) The use of pozzolan from calcined clays in preventing excessive expansion due to the alkali-aggregate reaction in some Brazilian dams. In: Grattan-Bellew PE (ed) 7th International Conference on Concrete Alkali-Aggregate Reactions, 1986 Ottawa. Noyes, pp 66–70Google Scholar
  5. Antoni M, Rossen J, Martirena F, Scrivener K (2012) Cement substitution by a combination of metakaolin and limestone. Cem Concr Res 42:1579–1589CrossRefGoogle Scholar
  6. Asbridge A, Chadbourn G, Page C (2001) Effects of metakaolin and the interfacial transition zone on the diffusion of chloride ions through cement mortars. Cem Concr Res 31:1567–1572CrossRefGoogle Scholar
  7. Associação Brasileira De Normas Técnicas (1999) Cimento Portland Pozolânico (NBR 5736: 1991 Versão Corrigida: 1999). Rio de JaneiroGoogle Scholar
  8. Association Française De Normalisation (AFNOR) (2012) Addition for concrete—Metakaolin—Specifications and conformity criteria—Métakaolin, addition pouzzolanique pour bétons (NF P18–513)Google Scholar
  9. Association Française De Normalisation (AFNOR) (2014) Béton: Spécification, performance, production et conformité–Complément national à la norme (NF EN 206/CN)Google Scholar
  10. ASTM International (2012) Standard test method for scaling resistance of concrete surfaces exposed to deicing chemicals (ASTM C672/C672 M-12). West Conshohocken, PAGoogle Scholar
  11. ASTM International (2015a) Standard specification for blended hydraulic cements (ASTM C595/C595 M—15ε1). West Conshohocken, PAGoogle Scholar
  12. ASTM International (2015b) Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete (ASTM C618–15). West Conshohocken, PAGoogle Scholar
  13. ASTM International (2015c) Standard test method for resistance of concrete to rapid freezing and thawing (ASTM C666/C666 M-15). West Conshohocken, PAGoogle Scholar
  14. Badogiannis E, Kakali G, Dimopoulou G, Chaniotakis E, Tsivilis S (2005a) Metakaolin as a main cement constituent. Exploitation of poor Greek kaolins. Cem Concr Compos 27:197–203CrossRefGoogle Scholar
  15. Badogiannis E, Kakali G, Tsivilis S (2005b) Metakaolin as supplementary cementitious material. Optimization of kaolin to metakaolin conversion. J Therm Anal Calorim 81:457–462CrossRefGoogle Scholar
  16. Badogiannis E, Tsivilis S (2009) Exploitation of poor Greek kaolins: durability of metakaolin concrete. Cem Concr Compos 31:128–133CrossRefGoogle Scholar
  17. Bai J, Wild S (2002) Investigation of the temperature change and heat evolution of mortar incorporating PFA and metakaolin. Cem Concr Compos 24:201–209CrossRefGoogle Scholar
  18. Banfill P, Frias M (2007) Rheology and conduction calorimetry of cement modified with calcined paper sludge. Cem Concr Res 37:184–190CrossRefGoogle Scholar
  19. Batis G, Pantazopoulou P, Tsivilis S, Badogiannis E (2005) The effect of metakaolin on the corrosion behavior of cement mortars. Cem Concr Compos 27:125–130CrossRefGoogle Scholar
  20. Bellotto M, Gualtieri A, Artioli G, Clark SM (1995) Kinetic study of the kaolinite-mullite reaction sequence. 1. Kaolinite dehydroxylation. Phys Chem Miner 22:207–214CrossRefGoogle Scholar
  21. Bernal SA, Skibsted J, Herfort D (2011) Hybrid binders based on alkali sulfate-activated Portland clinker and metakaolin. In: Palomo A (ed) XIII International Congress on the Chemistry of Cement, 2011 Madrid. CD-ROM proceedingsGoogle Scholar
  22. Brooks J, Johari MM (2001) Effect of metakaolin on creep and shrinkage of concrete. Cem Concr Compos 23:495–502CrossRefGoogle Scholar
  23. Brooks J, Johari MM, Mazloom M (2000) Effect of admixtures on the setting times of high-strength concrete. Cem Concr Compos 22:293–301CrossRefGoogle Scholar
  24. Brown IWM, Mackenzie KJD, Meinhold RH, Bowden ME (1985) Outstanding problems in the kaolinite-mullite reaction sequence investigated by 29Si and 27Al solid-state nuclear magnetic resonance: II. High-temperature transformations of metakaolinite. J Am Ceram Soc 68:298–301CrossRefGoogle Scholar
  25. Bucher R, Cyr M, Escadeillas G (2015a) Carbonation of blended binders containing metakaolin. In: Scrivener K, Favier A (eds) Calcined clays for sustainable concrete: proceedings of the 1st international conference on calcined clays for sustainable concrete. Springer Netherlands, DordrechtGoogle Scholar
  26. Bucher R, Diederich P, Mouret M, Escadeillas G, Cyr M (2015b) Self-compacting concrete using flash-metakaolin: design method. Mater Struct 48:1717–1737CrossRefGoogle Scholar
  27. Bureau of Indian Standards (2015) Metakaolin for use in cement, cement mortar and concrete—specification (IS 16354). New DelhiGoogle Scholar
  28. Canadian Standards Association (2008a) Cementitious materials for use in concrete (A3001-08). Mississauga, ONGoogle Scholar
  29. Canadian Standards Association (2008b) Standard practice for the evaluation of alternative supplementary cementing materials (ASCMs) for use in concrete (A3004-E1). Mississauga, ONGoogle Scholar
  30. Castillo R, Fernández R, Antoni M, Scrivener K, Alujas A (2010) Activation of low grade clays at high temperatures. Revista Ingeniería de Construcción 25:329–352CrossRefGoogle Scholar
  31. Christodoulou G (2000) A comparative study of the effects of silica fume, metakaolin and PFA on the air content of fresh concrete. SCI Lecture Papers Series. Society of Chemical Industry, London, UKGoogle Scholar
  32. Claverie M, Martin F, Tardy J, Cyr M, de Parseval P, Grauby O, le Roux C (2015) Structural and chemical changes in kaolinite caused by flash calcination: Formation of spherical particles. Appl Clay Sci 114:247–255CrossRefGoogle Scholar
  33. Courard L, Darimont A, Schouterden M, Ferauche F, Willem X, Degeimbre R (2003) Durability of mortars modified with metakaolin. Cem Concr Res 33:1473–1479CrossRefGoogle Scholar
  34. Cyr M, Idir R, Escadeillas G (2012) Use of metakaolin to stabilize sewage sludge ash and municipal solid waste incineration fly ash in cement-based materials. J Hazard Mater 243:193–203CrossRefGoogle Scholar
  35. Cyr M, Trinh M, Husson B, Casaux-Ginestet G (2014) Effect of cement type on metakaolin efficiency. Cem Concr Res 64:63–72CrossRefGoogle Scholar
  36. Damidot D, Stronach S, Kindness A, Atkins M, Glasser F (1994) Thermodynamic investigation of the CaO-Al2O3-CaCO3-H2O closed system at 25 ℃ and the influence of Na2O. Cem Concr Res 24:563–572CrossRefGoogle Scholar
  37. Duan P, Shui Z, Chen W, Shen C (2013) Effects of metakaolin, silica fume and slag on pore structure, interfacial transition zone and compressive strength of concrete. Constr Build Mater 44:1–6CrossRefGoogle Scholar
  38. Dubey A, Banthia N (1998) Influence of high-reactivity metakaolin and silica fume on the flexural toughness of high-performance steel fiber reinforced concrete. ACI Mater J 95Google Scholar
  39. EC Regulation (2006) No 1907/2006—REACH of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) and establishing a European Chemicals AgencyGoogle Scholar
  40. European Committee for Standardization (CEN) (2011) Cement—Part 1: composition, specifications and conformity criteria for common cements (EN 197-1: 2011). Belgium, BrusselsGoogle Scholar
  41. European Committee For Standardization (CEN) (2013) Concrete: specification, performance, production and conformity (EN 206: 2013). Belgium, BrusselsGoogle Scholar
  42. Frías M, Cabrera J (2000) Pore size distribution and degree of hydration of metakaolin–cement pastes. Cem Concr Res 30:561–569CrossRefGoogle Scholar
  43. Frías M, Sánchez de Rojas MI, Cabrera J (2000) The effect that the pozzolanic reaction of metakaolin has on the heat evolution in metakaolin-cement mortars. Cem Concr Res 30:209–216CrossRefGoogle Scholar
  44. Gleize PJP, Cyr M, Escadeillas G (2007) Effects of metakaolin on autogenous shrinkage of cement pastes. Cem Concr Compos 29:80–87CrossRefGoogle Scholar
  45. Güneyisi E, Gesoğlu M, Karaoğlu S, Mermerdaş K (2012) Strength, permeability and shrinkage cracking of silica fume and metakaolin concretes. Constr Build Mater 34:120–130CrossRefGoogle Scholar
  46. Güneyisi E, Gesoğlu M, Mermerdaş K (2008) Improving strength, drying shrinkage, and pore structure of concrete using metakaolin. Mater Struct 41:937–949CrossRefGoogle Scholar
  47. Habert G, Choupay N, Escadeillas G, Guillaume D, Montel JM (2009) Clay content of argillites: influence on cement based mortars. Appl Clay Sci 43:322–330CrossRefGoogle Scholar
  48. Habert G, D’espinose De Lacaillerie JB, Roussel N (2011) An environmental evaluation of geopolymer based concrete production: reviewing current research trends. J Clean Prod 19:1229–1238CrossRefGoogle Scholar
  49. Hassan AAA, Lachemi M, Hossain KMA (2010) Effect of metakaolin on the rheology of self-consolidating concrete. In: Khayat KH, Feys D (eds) Design, Production and Placement of Self-Consolidating Concrete. RILEM, Bookseries 1, Paris, FranceGoogle Scholar
  50. He C, Osbaeck B, Makovicky E (1995) Pozzolanic reactions of six principal clay minerals: activation, reactivity assessments and technological effects. Cem Concr Res 25:1691–1702CrossRefGoogle Scholar
  51. Justice J, Kurtis K (2007) Influence of metakaolin surface area on properties of cement-based materials. J Mater Civ Eng 19:762–771CrossRefGoogle Scholar
  52. Justice JM, Kennison LH, Mohr BJ, Beckwith SL, Mccormick LE, Wiggins B, Zhang ZZ, Kurtis KE (2005) Comparison of two metakaolins and a silica fume used as supplementary cementitious materials. In: Proceedings of the Seventh International Symposium on Utilization of High-Strength/High Performance Concrete, ACI SP-228, 2005. American Concrete Institute, Washington DC, pp 213–226Google Scholar
  53. Kakali G, Perraki T, Tsivilis S, Badogiannis E (2001) Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. Appl Clay Sci 20:73–80CrossRefGoogle Scholar
  54. Kaur G, Singh SP, Kaushik SK (2014) Fatigue analysis of fibrous concrete with cement additions. Proc Inst Civil Eng Const Mater 167:79–90CrossRefGoogle Scholar
  55. Khatib J, Hibbert J (2005) Selected engineering properties of concrete incorporating slag and metakaolin. Constr Build Mater 19:460–472CrossRefGoogle Scholar
  56. Khatib J, Wild S (1998) Sulphate resistance of metakaolin mortar. Cem Concr Res 28:83–92CrossRefGoogle Scholar
  57. Khatib JM, Clay RM (2004) Absorption characteristics of metakaolin concrete. Cem Concr Res 34:19–29CrossRefGoogle Scholar
  58. Kostuch J, Walters V, Jones T (2000) High performance concretes incorporating metakaolin: a review. Concrete 2:1799–1811Google Scholar
  59. Lawler JS, Connolly JD, Krauss PD, Tracy SL, Ankenmann BE (2007) NCHRP Report 566, guidelines for concrete mixtures containing supplementary cementitious materials to enhance durability of bridge decks. Washington DCGoogle Scholar
  60. Lee S, Kim YJ, Lee HJ, Moon H-S (2001) Electron-beam-induced phase transformations from metakaolinite to mullite investigated by EF-TEM and HRTEM. J Am Ceram Soc 84:2096–2098CrossRefGoogle Scholar
  61. Lee S, Kim YJ, Moon H-S (1999) Phase transformation sequence from kaolinite to mullite investigated by an energy-filtering transmission electron microscope. J Am Ceram Soc 82:2841–2848CrossRefGoogle Scholar
  62. Lee S, Moon H, Hooton R, Kim J (2005) Effect of solution concentrations and replacement levels of metakaolin on the resistance of mortars exposed to magnesium sulfate solutions. Cem Concr Res 35:1314–1323CrossRefGoogle Scholar
  63. Li Z, Ding Z (2003) Property improvement of Portland cement by incorporating with metakaolin and slag. Cem Concr Res 33:579–584CrossRefGoogle Scholar
  64. Mackenzie KJD (2009) Utilisation of non-thermally activated clays in the production of geopolymers. In: Provis JL, Van Deventer JSJ (eds) Geopolymers: Structure, Processing, Properties and Industrial Applications. Woodhead, Cambridge, UKGoogle Scholar
  65. Mackenzie KJD, Brown IWM, Meinhold RH, Bowden ME (1985) Outstanding problems in the kaolinite-mullite reaction sequence investigated by 29Si and 27Al solid-state nuclear magnetic resonance: I. Metakaolinite. J Am Ceram Soc 68:293–297CrossRefGoogle Scholar
  66. Marikunte SS, Hiranya AS, Darling N (2004) Plastic shrinkage cracking of concrete modified with silica fume and metakaolin. In: Weiss WJ, Kovler K, Marchand J, Mindess S (eds) International RILEM Symposium on Concrete Science and Engineering: A Tribute to Arnon Bentur. RILEM, Evanston, ILGoogle Scholar
  67. Moulin E, Blanc P, Sorrentino D (2001) Influence of key cement chemical parameters on the properties of metakaolin blended cements. Cem Concr Compos 23:463–469CrossRefGoogle Scholar
  68. Murray HH (2000) Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Appl Clay Sci 17:207–221CrossRefGoogle Scholar
  69. Oriol M, Pera J (1995) Pozzolanic activity of metakaolin under microwave treatment. Cem Concr Res 25:265–270CrossRefGoogle Scholar
  70. Pera J, Bonnin E (1996) Inertization of toxic metals in metakaolin-blended cements. Am Ceram Soc, Westerville, OH (United States)Google Scholar
  71. Poon CS, Kou SC, Lam L (2006) Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete. Constr Build Mater 20:858–865CrossRefGoogle Scholar
  72. Qian X, Li Z (2001) The relationships between stress and strain for high-performance concrete with metakaolin. Cem Concr Res 31:1607–1611CrossRefGoogle Scholar
  73. Quanji Z (2010) Thixotropic behavior of cement-based materials: effect of clay and cement types. MSc MSc, Iowa State University, Ames IAGoogle Scholar
  74. Ramezanianpour AA, Bahrami Jovein H (2012) Influence of metakaolin as supplementary cementing material on strength and durability of concretes. Constr Build Mater 30:470–479CrossRefGoogle Scholar
  75. Ramlochan T, Thomas M, Gruber KA (2000) The effect of metakaolin on alkali–silica reaction in concrete. Cem Concr Res 30:339–344CrossRefGoogle Scholar
  76. Rashad AM (2013) Metakaolin as cementitious material: History, scours, production and composition–a comprehensive overview. Constr Build Mater 41:303–318CrossRefGoogle Scholar
  77. Sabir B, Wild S, Bai J (2001) Metakaolin and calcined clays as pozzolans for concrete: a review. Cement Concr Compos 23:441–454CrossRefGoogle Scholar
  78. Saidat F, Mouret M, Cyr M (2012) Chemical activation of metakaolin in cement-based materials. In: 10th International Conference on Superplasticizers and Other Chemical Admixtures in Concrete. Prague (Czech Republic)Google Scholar
  79. SAN Nicolas R (2011) Performance-based approach for concrete containing metakaolin obtained by flash calcination. Université de Toulouse, Toulouse, p 340Google Scholar
  80. San Nicolas R, Cyr M, Escadeillas G (2013) Characteristics and applications of flash metakaolins. Appl Clay Sci 83–84:253–262CrossRefGoogle Scholar
  81. San Nicolas R, Cyr M, Escadeillas G (2014) Performance-based approach to durability of concrete containing flash-calcined metakaolin as cement replacement. Constr Build Mater 55:313–322CrossRefGoogle Scholar
  82. Shvarzman A, Kovler K, Grader G, Shter G (2003) The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite. Cem Concr Res 33:405–416CrossRefGoogle Scholar
  83. Siddique R, Klaus J (2009) Influence of metakaolin on the properties of mortar and concrete: a review. Appl Clay Sci 43:392–400CrossRefGoogle Scholar
  84. Snellings R, Mertens G, Elsen J (2012) Supplementary cementitious materials. Rev Mineral Geochem 74:211–278CrossRefGoogle Scholar
  85. Standards Australia (2010) General purpose and blended cements (AS 3972–2010). SydneyGoogle Scholar
  86. Thomas MDA, Hooton RD, Scott A, Zibara H (2012) The effect of supplementary cementitious materials on chloride binding in hardened cement paste. Cem Concr Res 42:1–7CrossRefGoogle Scholar
  87. Vu D, Stroeven P, Bui V (2001) Strength and durability aspects of calcined kaolin-blended Portland cement mortar and concrete. Cem Concr Compos 23:471–478CrossRefGoogle Scholar
  88. Weil M, Dombrowski-Daube K, Buchwald A (2010) How to assess the environmental sustainability of geopolymers? a life cycle perspective. Adv Sci Technol 69:186–191CrossRefGoogle Scholar
  89. White CE, Provis JL, Proffen T, Riley DP, Van Deventer JSJ (2010a) Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: the case of metakaolin. Phys Chem Chem Phys 12:3239–3245Google Scholar
  90. White CE, Provis JL, Proffen T, Riley DP, Van Deventer JSJ (2010b). Density functional modeling of the local structure of kaolinite subjected to thermal dehydroxylation. J Phys Chem A 114:4988–4996Google Scholar
  91. White CE, Provis JL, Gordon LE, Riley DP, Proffen T, van Deventer JSJ (2011) The effect of temperature on the local structure of kaolinite intercalated with potassium acetate. Chem Mater 23:188–199CrossRefGoogle Scholar
  92. Wild S, Khatib J, Jones A (1996) Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete. Cem Concr Res 26:1537–1544CrossRefGoogle Scholar
  93. Wild S, Khatib J, Roose L (1998) Chemical shrinkage and autogenous shrinkage of Portland cement—metakaolin pastes. Adv Cem Res 10:109–119CrossRefGoogle Scholar
  94. Wild S, Khatib JM (1997) Portlandite consumption in metakaolin cement pastes and mortars. Cem Concr Res 27:137–146CrossRefGoogle Scholar
  95. Zhang M, Malhotra V (1995) Characteristics of a thermally activated alumino-silicate pozzolanic material and its use in concrete. Cem Concr Res 25:1713–1725CrossRefGoogle Scholar

Copyright information

© RILEM 2018

Authors and Affiliations

  • F. Wang
    • 1
  • K. Kovler
    • 1
  • J. L. Provis
    • 2
  • A. Buchwald
    • 3
  • M. Cyr
    • 4
  • C. Patapy
    • 4
  • S. Kamali-Bernard
    • 5
  • L. Courard
    • 6
  • K. Sideris
    • 7
  1. 1.Faculty of Civil and Environmental EngineeringTechnion—Israel Institute of TechnologyHaifaIsrael
  2. 2.Department of Materials Science and EngineeringUniversity of Sheffield, Sir Robert Hadfield BuildingSheffieldUK
  3. 3.ASCEM B.V.RhedenThe Netherlands
  4. 4.Université de Toulouse; UPS, INSA; LMDC (Laboratoire Matériaux et Durabilité Des Constructions)Toulouse Cedex 4France
  5. 5.UEB, INSA-Rennes, LGCGMRennes Cedex 7France
  6. 6.GeMMe Research Group, ArGEnCo DepartmentUniversity of LiegeLiegeBelgium
  7. 7.Department of Civil EngineeringDemocritus University of ThraceXanthiGreece

Personalised recommendations