Skip to main content

Part of the book series: RILEM State-of-the-Art Reports ((RILEM State Art Reports,volume 25))

Abstract

Fly ash is an industrial by-product deriving from electricity generating plants. It is the by-product of burning coal or lignite. Fly ash is one of the first artificial admixtures used for the production of concrete since the first decades of the 20th century. Its chemical and mineralogical composition mainly depends on the relevant properties of the raw material used as well as on the type of furnace and the way it is collected. Fly ash may have beneficial effects on both the fresh and hardened properties of concrete mixtures. This chapter provides an extensive report on the use of fly ash in concrete. Reference is made to the regulatory framework governing the application of fly ash, mainly in Europe and America, to factors affecting the quality of the product and to the effects of different fly ashes on fresh and hardened characteristics of concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdun Nur EA (1961) Fly Ash in concrete evaluation. Highways Res Bull 281

    Google Scholar 

  • ACI committee 226 (1987) 3R-87: Fly ash in concrete. ACI Mater J 11:381–409

    Google Scholar 

  • Al-Amoudi OSB (1999) Mechanisms of sulfate attack in plain and blended cements: a review. In: Proceedings of the conference extending performance of concrete structures, international congress “creating with concrete”, Dundee, pp 247–260

    Google Scholar 

  • Alonso JL, Wesche K (1992) Characterization of Fly Ash. Fly ash in concrete, properties and performance, RILEM Report, E & FN Spon, pp 3–23(1992)

    Google Scholar 

  • ASTM C 618 (2015) Standard specification for coal fly ash and raw or calcined natural pozzolan for use as a mineral admixture in concrete. Annual Book of ASTM Standards, Philadelphia

    Google Scholar 

  • ASTM C1012-95 (1995) Length Change of hydraulic-cement mortars exposed to a sulfate solution. American Society for Testing and Materials, vol 04.01, Philadelphia, USA

    Google Scholar 

  • ASTM C150-95 (2015) Standard specification for Portland cement. American Society for Testing and Materials, vol 04.01, Philadelphia, USA

    Google Scholar 

  • Braun H, Gebauer J (1983) Moeglichkeiten und grenzen der verwendung von flugaschen im zement. Zement-Kalkgips (ZKG) 36(5):254–258

    Google Scholar 

  • Brown JH (1982) The strength and workability of concrete with PFA substitution. In: Proceedings International Symposium on the Use of PFA in Concrete, University of Leeds, England, pp 151–161

    Google Scholar 

  • Camoes A, Agiar B, Jalali S (2003) Durability of low cost high performance fly ash concrete. In: The 2003 International Ash Utilisation Symposium, Center for Applied Energy Research, Kentucky, USA

    Google Scholar 

  • Carette GG, Malhotra VM (1984) Characterization of Canadian fly ashes and their performance in concrete. Division report MRP/MSL 84–137, CANMET, Energy, Mines and Resources, Canada

    Google Scholar 

  • Central Electricity Generating Board (CEGB) (1967) PFA data book. London

    Google Scholar 

  • Chappex T, Scrivener KL (2012a) Alkali fixation of C-S–H in blended cement pastes and its relation to alkali silica reaction. Cem Conc Res 42:1049–1054

    Article  Google Scholar 

  • Chappex T, Scrivener KL (2012b) The influence of aluminum on the dissolution of amorphous silica and its relation to alkali silica reaction. Cem Conc Res 42:1645–1649

    Article  Google Scholar 

  • Chappex T, Scrivener KL (2013) The effect of aluminum in solution on the dissolution of amorphous silica and its relation to cementitious systems. J Am Ceram Soc 96:592–597

    Google Scholar 

  • Chindaprasirt P, Chotithanorm C, Cao HT, Sirivivatnanon V (2007) Influence of fly ash fineness on the chloride penetration of concrete. Construct Build Mater 21(2):356–361

    Google Scholar 

  • Costa U, Massazza F (1983) Some properties of pozzolanic cements containing fly ashes. In: Proceedings of the first CANMET/ACI international conference on the use of fly ash, silica fume, slag and other mineral by-products in concrete, ACI SP-79, pp 235–254

    Google Scholar 

  • Davies RE (1954) Pozzolanic materials—with special reference to their use in concrete pipe. Technical memo, American Concrete Pipe Association

    Google Scholar 

  • Davis RE, Carlson RW, Kelly JW, Davis HE (1937) Properties of cements and concretes containing fly ash. J Am Concr Inst 33:577–612

    Google Scholar 

  • Demirboğa R, Türkmen I, Karakoc MB (2007) Thermo-mechanical properties of concrete containing high-volume mineral admixtures. Build Environ 42(1):349–354

    Google Scholar 

  • Diamond S (1985) Selection and use of fly ash for high way concrete. Joint Highway Research Project, Purdue University, Indiana

    Google Scholar 

  • Dunstan ER Jr (1980) A possible method for identifying fly ashes that will improve sulfate resistance. Cem Concr Aggregates 2(1):20–30

    Article  Google Scholar 

  • Dunstan ER (1987) Sulfate resistance of fly ash concretes: the R-value. In: Proceedings of the katharine and bryant mather international conference on concrete durability, ACI SP-100, pp 2027–2040

    Google Scholar 

  • Efes Y (1980) Untersuchungen ueber einfluesse auf die spezifische oberflaeche nach blaine von steinkohlenflugaschen und ueber die auswirkungen des blaine-wertes auf andere eigenschaften. Tizfachberichte 104(1):20–29

    Google Scholar 

  • Elsageer M (2011) Early age strength development of fly ash mixes as affected by temperature (Ph.D. thesis). The University of Liverpool

    Google Scholar 

  • EN 206-13 (2013) European Committee for Standardization, European Standard EN 206: Concrete—specification, performance, production and conformity. CEN, Brussels

    Google Scholar 

  • Erdogan TY, Tokyay M, Ramyar K (1992) Investigations on the sulfate resistance of high-lime fly ash incorporating PC-FA mortras. In: Proceedings of the 4th CANMET/ACI international conference on fly ash, silica fume, slag and natural pozzolans in concrete, ACI SP-132, Istanbul, pp 271–280

    Google Scholar 

  • Erdoğdu K, Türker P (1998) Effects of fly ash particle size on strength of Portland cement fly ash mortars. Cem Concr Res 28(9):1217–1222

    Article  Google Scholar 

  • EUROGYPSUM-ECOBA-VGB (2005) FGD Gypsum—Quality criteria and analysis methods

    Google Scholar 

  • Fay KFV, Pierce JS (1989) Sulfate resistance of concretes with various fly ashes. ASTM standardization news, pp 32–37

    Google Scholar 

  • Fib Bulletin 34 (2006) Model code for service life design, fib (ISBN 2-88394- 074-6)

    Google Scholar 

  • Gebler SH, Klieger P (1986) Effect of fly ash on physical properties of concrete. In: Proceedings of the 2nd international conference on fly ash, silica fume, slag, and natural pozzolans in concrete, ACI SP-91, vol 1, pp 1–50

    Google Scholar 

  • Gomes S, François M, Abdelmoula M, Refait Ph, Pellissier C, Evrard O (1999) Characterization of magnetite in silico-aluminous fly ash by SEM, TEM, XRD, magnetic susceptibility, and Mössbauer spectroscopy. Cem Concr Res 29(11):1705–1711

    Article  Google Scholar 

  • Haque MN, Langan BW, Ward MA (1988) High fly ash concretes. ACI Mater J 8(1):54–60

    Google Scholar 

  • Hatzitheodorou A (2007) In-situ strength development of concretes with supplementary cementitious materials (Ph.D. thesis). The University of Liverpool

    Google Scholar 

  • Hellenic Technical Specification (2007) Greek gly ashes. J Gov Hellenic Democracy Bull 2(551) (in Greek)

    Google Scholar 

  • Helmuth R (1987) Fly ash in cement and concrete, PCA, Skokie, Ill., p 203

    Google Scholar 

  • Idorn GM, Henriksen KR (1984) State of the art for fly ash uses in concrete. Cem Concr Res 14(4):463–470

    Article  Google Scholar 

  • Jaturapitakkul C, Kiattikomol K, Sata V, Leekeeratikul T (2004) Use of ground coarse fly ash as a replacement of condensed silica fume in producing high-strength concrete. Cem Concr Res 34(4):549–555

    Article  Google Scholar 

  • Jiang LH, Malhotra VM (2000) Reduction in water demand of non-air-entrained concrete incorporating large volumes of fly ash. Cem Concr Res 30(11):1785–1789

    Article  Google Scholar 

  • Joshi RC (1979) Sources of pozzolanic activity in fly ashes—a critical review. In: Proceedings of the 5th international fly ash utilization symposium, Atlanta, GA, USA, pp 610–623

    Google Scholar 

  • Joshi RC (1987) Effect of a sub-bituminous fly ash and its properties on sulfate resistance of sand cement mortars. J Durab Build Mater 4:271–286

    Google Scholar 

  • Joshi RC, Lohtia RP (1993) Effects of premature freezing temperatures on compressive strength, elasticity and microstructure of high volume fly ash concrete. In: Proceedings of third canadian symposium on cement and concrete, Ottawa, Canada

    Google Scholar 

  • Joshi RC, Lohtia RP, Salam MA (1993) High strength concrete with high volumes of Canadian sub-bituminous coal ash. In: Proceedings of the third international symposium on utilization of high strength concrete, Lillachammer, Norway

    Google Scholar 

  • Kasai Y, Matsui I, Fukushima U, Kamohara H (1983) Air permeability of blended cement mortars. In: Proceedings of the 1st international conference on the use of fly ash, silica fume, slag and other mineral by-products in concrete. ACI SP 29, pp 435–451

    Google Scholar 

  • Khan MI (2010) Rheological characteristics of HPC containing composite cementitious materials. Concrete Technology—Journal of the Concrete Plant International, No 02/10, Germany, pp 78–84

    Google Scholar 

  • Klieger P, Perenchio WF (1972) Laboratory studies of blended cement: Portland- pozzolan cements. Research and Development Bulletin RD013, Portland cement Association, USA

    Google Scholar 

  • Knutsson A (2010) Freeze/Thaw durability of concrete with fly ash. Master of Science Thesis in the Master’s Programme Structural engineering and Building Performance Design, Department of Civil and Environmental Engineering, Division of Building Technology, Building Materials, Chalmers University of Technology, Göteborg, Sweden, Master’s Thesis 2010:154

    Google Scholar 

  • Korac V, Ukraincik V (1983) Studies into the use of fly ash in concrete for water dam structures. ACI Special Publication SP 79:173–185

    Google Scholar 

  • Lane RO, Best JF (1982) Properties and use of fly ash in Portland cement concrete. Concr Int 4(7):81–92

    Google Scholar 

  • Majko RM, Pistilli MF (1984) Optimizing the amount of Class C fly ash in concrete mixtures. Cem Concr Aggregates CCAGDP 6(2):105–119

    Google Scholar 

  • Malhotra VM, Carette GG, Bremmer TW (1982) Durability of concrete containing granulated blast furnace slag or fly ash or both in Marine environment. CANMET, EMR, Canada Report 80-18E

    Google Scholar 

  • Malhotra VM, Caratte GG, Bilodeau A, Sivasundram V (1990) Some aspects of durability of high volume ASTM class F (Low-calcium) fly ash concrete. Mineral sciences laboratories [Division report MSL-90–20 (OP & J)]

    Google Scholar 

  • Manmohan D, Mehta PK (1981) Influence of pozzolanic, slag, and chemical admixtures on pore size distribution and permeability of hardened cement pastes. Cem Concr Aggregates 3(1):63–67

    Article  Google Scholar 

  • McCarthy GJ, Johansen DM, Steinwand SJ (1988) X-ray diffraction analysis of fly ash. In: Barrett CS et al (eds) Advances in X-Ray analysis, vol 31. Plenum Press, New York

    Google Scholar 

  • McCarthy GJ, Berry EE, Majko RM (1998) Fly ash and coal conversion by-products: characterization, utilization, and disposal IV. In: Materials research society symposium proceedings. (ISBN 978-0931837814)

    Google Scholar 

  • Mehta PK (1981) Studies on blended Portland cements containing Santorin earth. Cem Concr Res 11(3):507–518

    Article  Google Scholar 

  • Mehta PK (1986a) Effect of fly ash composition on sulfate resistance of cements. ACI Mat J 83(6):994–1000

    Google Scholar 

  • Mehta PK (1986b) Concrete: structure, properties and materials. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Mehta PK (1988) Standard specifications for mineral admixtures—an overview. ACI SP 91:637–658

    Google Scholar 

  • Mehta PK (1994) In: Khayat IH, Aitcin PC (eds) Symposium on durability of concrete, Nice, France pp 99–118

    Google Scholar 

  • Monzo J, Paya J, Peris-Mora E, Borrachero MV (1995) Mechanical treatment of fly ashes: strength development and workability of mortars containing ground fly ashes. In: Proceedings of 5th CANMET/ACI international conference on the use of fly ash, silica fume, slag and natural pozzolans in concrete, pp 339–354

    Google Scholar 

  • Nagataki S, Ohga H (1992) Combined effect of carbonation and chloride on corrosion of reinforcement in fly ash concrete. In: Proceedings 4th international conference on the use of fly ash, silica fume, slag, and natural pozzolans in concrete, Istanbul, Turkey, pp 227–244

    Google Scholar 

  • Naik TR, Ramme BR, Kraus RN, Siddique R (2003) Long-term performance of high-volume fly ash concrete pavements. ACI Mater J 100(2):150–155

    Google Scholar 

  • Neville AM (1995) Properties of concrete, 4th edn. Pearson, Harlow, UK

    Google Scholar 

  • Ng S, Justnes H (2016) Influence of plasticizers on the rheology and early heat of hydration of blended cements with high content of fly ash. Cem Concr Comp 65:41–54

    Article  Google Scholar 

  • Owens PL (1979) Fly ash and its usage in concrete. Concr Soc J 13(7):21–26

    Google Scholar 

  • Papadakis VG (1999) Effect of fly ash on Portland cement systems. Part I: Low calcium fly ash. Cem Conc Res 29:1727–1739

    Google Scholar 

  • Papadakis VG (2000a) Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress. Cem Conc Res 30(1):291–299

    Article  MathSciNet  Google Scholar 

  • Papadakis VG (2000b) Effect of fly ash on Portland cement systems. Part II: High calcium fly ash. Cem Conc Res 30:1647–1654

    Google Scholar 

  • Papadakis VG, Tsimas S (2002) Supplementary cementing materials in concrete: Part I: efficiency and design. Cem Concr Res 32(10):525–1532

    Article  Google Scholar 

  • Papadakis VG, Fardis MN, Vayenas CG (1992) Hydration and carbonation of pozzolanic cements. ACI Mat J 89(2):119–130

    Google Scholar 

  • Papayianni J (1996) Standards for Using fly ashes in concrete production and use of greek fly ashes. In: Proceedings of the 12th hellenic congress on concrete, Lemesos, Cyprus, pp 146–155 (in Greek)

    Google Scholar 

  • Papayianni I (2010a) Use of calcareous ash in civil engineering. In: Proceedings of the international conference eurocoalash 2010, pp 45–58

    Google Scholar 

  • Papayianni I (2010b) Use of calcareous ash in civil engineering. In: Proceedings of Eurocoalash 2010, pp 58–72

    Google Scholar 

  • Papayianni-Papadopoulou J (1981) Research for the possibility of using Ptolemaida’s fly ash for concrete production. Ph.D. Dissertation, Aristotle University of Thessaloniki, Thessaloniki, Greece (in Greek)

    Google Scholar 

  • Perenchio WF, Klieger P (1976) Further laboratory studies of Portland-pozzolan cements. Portland Cement Research and Development Bulletin RD041.01T

    Google Scholar 

  • Poole JL, Rinding K, Juenger M, Folliard K, Schindler A (2010) Effect of supplementary cementitious materials on apparent activation energy. J ASTM Int 7(9):1–16

    Google Scholar 

  • Ramakrishan V, Coyle WV, Brown J, Tluskus A, Benkataramanyam P (1981) Performance characteristics of concrete containing fly ash. In: Diamond S (ed) Proceedings symposium on fly ash incorporation in hydrated cement systems, Materials Research Society, Boston, pp 233–243

    Google Scholar 

  • Ravina D (1980) Optimized determination of PFA fineness with reference to pozzolanic activity. Cem Concr Res 10(4):573–580

    Article  Google Scholar 

  • Rodway LE, Fedriko WM (1989) Superplasticized high volume fly ash structural concrete. ACI SP 114(1):98–112

    Google Scholar 

  • Roy DM (1987) Hydration of blended cements containing slag, fly ash, or silica fume. In: Proceedings of meeting institute of concrete technology, Coventry, UK, pp 29–39

    Google Scholar 

  • Schiepl P, Hardtle R (1994) Relationship between durability and fore structure properties of concretes containing fly ash. In: Khayat IH, Aitcin PC (eds) P.K. Mehta symposium on durability of concrete, Nice, France, pp 99–118

    Google Scholar 

  • Schmidt M (1992) Cement with inter-ground additives—capabilities and environmental relief. Part 2. Zement-Kalk Gips

    Google Scholar 

  • Shehata MH, Thomas MDA (2000) The effect of fly ash composition on the expansion of concrete due to alkali silica reaction. Cem Conc Res 1063–1072

    Google Scholar 

  • Shehata MH, Thomas MDA (2002) Use of ternary blends containing silica fume and fly ash to suppress expansion due to alkali-silica reaction in concrete. Cem Conc Res 341–349

    Google Scholar 

  • Siddique R (2003) Effect of fine aggregate replacement with class F fly ash on the mechanical properties of concrete. Cem Concr Res 33(4):539–547

    Article  Google Scholar 

  • Siddique R, Khan MI (2011) Supplementary cementing materials. Springer (ISBN 978-3-642-17865-8)

    Google Scholar 

  • Sideris KK (1996) Influence of natural pozzolanas and fly ash on the compressive strength and porosity of cement mortars and concretes. Ph.D. dissertation, Xanthi (in Greek)

    Google Scholar 

  • Sideris KK, Savva A (2001) Resistance of fly ash and natural pozzolans blended cement mortars and concrete to carbonation, sulfate attack and chloride ion penetration. In: Proceedings of the seventh CANMET/ACI international conference on fly ash, silica fume, slag and natural pozzolans in concrete, Madras, India, CANMET/ACI SP 119 Volume II, pp 275–293

    Google Scholar 

  • Sideris K, Sideris KK (1997) The cement hydration equation and its application to several hydration criteria according to the literature. In: Justnes H (ed) Proceedings of the 10th international congress on the chemistry of cement, Gothenburg, Sweden, 2ii061

    Google Scholar 

  • Sideris K, Sideris KK (2003) Ten years cement hydration equation and its application to chemistry and physics of cement paste, mortar and concrete, Xanthi, p 320 (ISBN 960-343-722-0)

    Google Scholar 

  • Sideris ΚK, Savva AE, Baltzopoulou KD, Economou CM, Sideris K (1997) Influence of silica and limestone aggregates on the final compressive strength of blended cement concretes prepared with the use of three different pozzolanas. In: Justnes H (ed) Proceedings of the 10th international congress on the chemistry of cement, Göthenburg, Sweden

    Google Scholar 

  • Sideris KK, Savva A, Papayianni J (2006) Sulfate attack and carbonation of plain and blended cements. Cem Concr Comp 28(1):47–56

    Article  Google Scholar 

  • Sivasundram V, Carette GG, Malhotra VM (1990) Selected properties of high volume fly ash concretes. ACI Concrete International, pp 47–50

    Google Scholar 

  • Soutsos M, Hatzitheodorou A, Kwasny J, Kanavaris F (2016) Effect of in situ temperature on the early age strength development of concrete with supplementary cementitious materials. Constr Build Mat 103:105–116

    Article  Google Scholar 

  • Stamatakis M, Fragulis D, Papageorgiou A (1997) Quality of Greek fly ash and its influence on blended cement production. In: Proceedings of the conference use of fly ash on construction Greece, pp 213–228, 3–4 October 1997 (in Greek)

    Google Scholar 

  • Tattersall GH, Banfill PFG (1983) The rheology of fresh concrete. Pitman, London

    Google Scholar 

  • Taylor HFW (1997) Cement chemistry, 2nd edn. Thomas Telford, London

    Book  Google Scholar 

  • Thomas MDA (1999) Laboratory and field studies of salt scaling in fly ash concrete. In: Setzer MJ, Auberg R (eds) Proceedings of the RILEM international workshop on frost resistance of concrete with and without deicing chemicals, Essen, Germany, Sept 1997

    Google Scholar 

  • Thomas MDA (2011) The effect of supplementary cementing materials on alkali silica reaction: a review. Cem Concr Res 41:1224–1231

    Article  Google Scholar 

  • Thomas M (2013) Supplementary cementing materials in concrete. CRC Press, Taylor & Francis Group, pp 190 (ISBN 978-1-4665-7298-0)

    Google Scholar 

  • Thomas MDA, Bamforth PB (1999) Modelling chloride diffusion in concrete: effect of fly ash and slag. Cem Concr Res 29(2):487–495

    Article  Google Scholar 

  • Tikalsky PJ, Carrasquillo RL, Snow PG (1990) Sulfate resistance of concrete containing fly ash. In: Proceedings of the G. M. Idorn international symposium on durability of concrete, ACI SP-131, pp 255–265

    Google Scholar 

  • Virtanen J (1983) Freeze–thaw resistance of concrete containing blast furnace slag, fly ash or condensed silica fume. In: Proceedings of the 1st international conference on the use of flyash, silica fume, slag and other mineral by-products, ACI SP-79, pp 923–942

    Google Scholar 

  • Wesche K (1991) Fly Ash in Concrete: Properties and Performance. E & FN Spon, London

    Google Scholar 

  • Whiting D (1989) Strength and durability of residential concretes containing fly ash, Research and Development Bulletin RD099, Portland Cement Association, http://www.cement.org/pdf_files/RD099.pdf, pp 42

  • World Coal Institute (2003) UK’s energy future?, Ecoal, The News Letter of the World Coal Institute, vol 45, 3, (2003)

    Google Scholar 

  • www.ecoba.com/ecobaccpprod.html (2007) Production and utilization of CCP’s in Europe [EU 15]

  • Yuan RL, Cook JE (1983) Study of class C fly ash in concrete. In: Proceeding of the 1st international conference on the use of fly ash, silica fume, slag, and other mineral byproducts in concrete, ACI SP-79 307–319

    Google Scholar 

  • Yuan RZ, Jin SX, Qian JC (1982) Effects of fly ash on rheology of fresh cement paste. In: Proceedings materials and research society symposium, pp 182–191

    Google Scholar 

  • Chindaprasirt, P., Chotithanorm, C., Cao, H.T., Sirivivatnanon, V.: Influence of fly ash fineness on the chloride penetration of concrete. Construct. Build. Mater. 21(2), 356–361 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kosmas Sideris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 RILEM

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sideris, K., Justnes, H., Soutsos, M., Sui, T. (2018). Fly Ash. In: De Belie, N., Soutsos, M., Gruyaert, E. (eds) Properties of Fresh and Hardened Concrete Containing Supplementary Cementitious Materials. RILEM State-of-the-Art Reports, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-70606-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70606-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70605-4

  • Online ISBN: 978-3-319-70606-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics