Skip to main content

B-Cell Receptors

  • Chapter
  • First Online:
Chronic Lymphocytic Leukemia

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

  • 780 Accesses

Abstract

What does the BCR do and why is it critical in normal B-cell development? What is its role in B-cell maturation and the biological responses including activation, tolerance, and/or differentiation? What is its role in CLL? Here, the focus is on the current understanding of the BCR signal cascade in normal B cells and its altered path in CLL that contributes to the pathogenesis of this disease. The role of antigen experience, stereotypy, and anergy in CLL evolution is discussed. Also discussed is the biology underlying the difference in clinical behavior due to mutation status of the immunoglobulin genes. This section finds its basis in immunology that is introduced in undergraduate studies. They are reviewed in the context relevant to the biology of CLL. The BCR signaling pathways are complex, and the select few that are significant in this context are discussed. The significance lies in the application of the knowledge of these signaling pathways in diagnosis, prognosis, and treatment of CLL. While we often pay attention to the results that are visibly applicable to us, the scientific methods that are utilized go unnoticed and are indeed awe-inspiring. Some of these methods are explained. The journey that traverses at least five decades is fascinating. Enjoy the journey.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basten A, Brink R, Peake P, Adams E, Crosbie J, Hartley S, Goodnow CC. Self tolerance in the B-cell repertoire. Immunol Rev. 1991;122:5–19.

    Article  CAS  PubMed  Google Scholar 

  2. Nemazee D, Russell D, Arnold B, Haemmerling G, Allison J, Miller JF, Morahan G, Buerki K. Clonal deletion of autospecific B lymphocytes. Immunol Rev. 1991;122:117–32.

    Article  CAS  PubMed  Google Scholar 

  3. Bachmann MF, Rohrer UH, Kundig TM, Burki K, Hengartner H, Zinkernagel RM. The influence of antigen organization on B cell responsiveness. Science. 1993;262(5138):1448–51.

    Article  CAS  PubMed  Google Scholar 

  4. Swerdlow SH, International Agency for Research on Cancer, World Health Organization. In: 4th edn, editor. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon, France: International Agency for Research on Cancer; 2008.

    Google Scholar 

  5. Chiorazzi N, Hatzi K, Albesiano E. B-cell chronic lymphocytic leukemia, a clonal disease of B lymphocytes with receptors that vary in specificity for (auto)antigens. Ann N Y Acad Sci. 2005;1062:1–12.

    Article  CAS  PubMed  Google Scholar 

  6. Kipps TJ. Immunobiology of chronic lymphocytic leukemia. Curr Opin Hematol. 2003;10(4):312–8.

    Article  PubMed  Google Scholar 

  7. Tobin G. The immunoglobulin genes: structure and specificity in chronic lymphocytic leukemia. Leuk Lymphoma. 2007;48(6):1081–6.

    Article  CAS  PubMed  Google Scholar 

  8. Caligaris-Cappio F. Anergy: the CLL cell limbo. Blood. 2014;123(21):3214–5.

    Article  CAS  PubMed  Google Scholar 

  9. Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL, Buchbinder A, Budman D, Dittmar K, Kolitz J, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 1999;94(6):1840–7.

    CAS  PubMed  Google Scholar 

  10. Hamblin TJ, Orchard JA, Ibbotson RE, Davis Z, Thomas PW, Stevenson FK, Oscier DG. CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease. Blood. 2002;99(3):1023–9.

    Article  CAS  PubMed  Google Scholar 

  11. Reth M, Hombach J, Wienands J, Campbell KS, Chien N, Justement LB, Cambier JC. The B-cell antigen receptor complex. Immunol Today. 1991;12(6):196–201.

    Article  CAS  PubMed  Google Scholar 

  12. Brack C, Hirama M, Lenhard-Schuller R, Tonegawa S. A complete immunoglobulin gene is created by somatic recombination. Cell. 1978;15(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  13. Alt FW, Yancopoulos GD, Blackwell TK, Wood C, Thomas E, Boss M, Coffman R, Rosenberg N, Tonegawa S, Baltimore D. Ordered rearrangement of immunoglobulin heavy chain variable region segments. EMBO J. 1984;3(6):1209–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rajewsky K. Clonal selection and learning in the antibody system. Nature. 1996;381(6585):751–8.

    Article  CAS  PubMed  Google Scholar 

  15. Meffre E, Casellas R, Nussenzweig MC. Antibody regulation of B cell development. Nat Immunol. 2000;1(5):379–85.

    Article  CAS  PubMed  Google Scholar 

  16. Chang B, Casali P. The CDR1 sequences of a major proportion of human germline Ig VH genes are inherently susceptible to amino acid replacement. Immunol Today. 1994;15(8):367–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jukes TH, King JL. Evolutionary nucleotide replacements in DNA. Nature. 1979;281(5732):605–6.

    Article  CAS  PubMed  Google Scholar 

  18. Milstein CP, Deverson EV, Rabbitts TH. The sequence of the human immunoglobulin mu-delta intron reveals possible vestigial switch segments. Nucleic Acids Res. 1984;12(16):6523–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hombach J, Leclercq L, Radbruch A, Rajewsky K, Reth M. A novel 34-kd protein co-isolated with the IgM molecule in surface IgM-expressing cells. EMBO J. 1988;7(11):3451–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kraus M, Alimzhanov MB, Rajewsky N, Rajewsky K. Survival of resting mature B lymphocytes depends on BCR signaling via the Igalpha/beta heterodimer. Cell. 2004;117(6):787–800.

    Article  CAS  PubMed  Google Scholar 

  21. Fais F, Ghiotto F, Hashimoto S, Sellars B, Valetto A, Allen SL, Schulman P, Vinciguerra VP, Rai K, Rassenti LZ, et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest. 1998;102(8):1515–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tobin G, Thunberg U, Johnson A, Eriksson I, Soderberg O, Karlsson K, Merup M, Juliusson G, Vilpo J, Enblad G, et al. Chronic lymphocytic leukemias utilizing the VH3-21 gene display highly restricted Vlambda2-14 gene use and homologous CDR3s: implicating recognition of a common antigen epitope. Blood. 2003;101(12):4952–7.

    Article  CAS  PubMed  Google Scholar 

  23. Hashimoto S, Dono M, Wakai M, Allen SL, Lichtman SM, Schulman P, Vinciguerra VP, Ferrarini M, Silver J, Chiorazzi N. Somatic diversification and selection of immunoglobulin heavy and light chain variable region genes in IgG+ CD5+ chronic lymphocytic leukemia B cells. J Exp Med. 1995;181(4):1507–17.

    Article  CAS  PubMed  Google Scholar 

  24. Shlomchik MJ, Marshak-Rothstein A, Wolfowicz CB, Rothstein TL, Weigert MG. The role of clonal selection and somatic mutation in autoimmunity. Nature. 1987;328(6133):805–11.

    Article  CAS  PubMed  Google Scholar 

  25. Clark EA, Lane PJ. Regulation of human B-cell activation and adhesion. Annu Rev Immunol. 1991;9:97–127.

    Article  CAS  PubMed  Google Scholar 

  26. Stevenson FK, Krysov S, Davies AJ, Steele AJ, Packham G. B-cell receptor signaling in chronic lymphocytic leukemia. Blood. 2011;118(16):4313–20.

    Article  CAS  PubMed  Google Scholar 

  27. Potter KN, Mockridge CI, Neville L, Wheatley I, Schenk M, Orchard J, Duncombe AS, Packham G, Stevenson FK. Structural and functional features of the B-cell receptor in IgG-positive chronic lymphocytic leukemia. Clin Cancer Res. 2006;12(6):1672–9.

    Article  CAS  PubMed  Google Scholar 

  28. Stevenson FK, Caligaris-Cappio F. Chronic lymphocytic leukemia: revelations from the B-cell receptor. Blood. 2004;103(12):4389–95.

    Article  CAS  PubMed  Google Scholar 

  29. Tobin G, Thunberg U, Karlsson K, Murray F, Laurell A, Willander K, Enblad G, Merup M, Vilpo J, Juliusson G, et al. Subsets with restricted immunoglobulin gene rearrangement features indicate a role for antigen selection in the development of chronic lymphocytic leukemia. Blood. 2004;104(9):2879–85.

    Article  CAS  PubMed  Google Scholar 

  30. Tobin G, Rosenquist R. Prognostic usage of V(H) gene mutation status and its surrogate markers and the role of antigen selection in chronic lymphocytic leukemia. Med Oncol. 2005;22(3):217–28.

    Article  CAS  PubMed  Google Scholar 

  31. Widhopf GF 2nd, Rassenti LZ, Toy TL, Gribben JG, Wierda WG, Kipps TJ. Chronic lymphocytic leukemia B cells of more than 1% of patients express virtually identical immunoglobulins. Blood. 2004;104(8):2499–504.

    Article  PubMed  CAS  Google Scholar 

  32. Baliakas P, Hadzidimitriou A, Sutton LA, Minga E, Agathangelidis A, Nichelatti M, Tsanousa A, Scarfo L, Davis Z, Yan XJ, et al. Clinical effect of stereotyped B-cell receptor immunoglobulins in chronic lymphocytic leukaemia: a retrospective multicentre study. Lancet Haematol. 2014;1(2):e74–84.

    Article  PubMed  Google Scholar 

  33. Agathangelidis A, Darzentas N, Hadzidimitriou A, Brochet X, Murray F, Yan XJ, Davis Z, van Gastel-Mol EJ, Tresoldi C, Chu CC, et al. Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies. Blood. 2012;119(19):4467–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Darzentas N, Hadzidimitriou A, Murray F, Hatzi K, Josefsson P, Laoutaris N, Moreno C, Anagnostopoulos A, Jurlander J, Tsaftaris A, et al. A different ontogenesis for chronic lymphocytic leukemia cases carrying stereotyped antigen receptors: molecular and computational evidence. Leukemia. 2010;24(1):125–32.

    Article  CAS  PubMed  Google Scholar 

  35. Messmer BT, Albesiano E, Efremov DG, Ghiotto F, Allen SL, Kolitz J, Foa R, Damle RN, Fais F, Messmer D, et al. Multiple distinct sets of stereotyped antigen receptors indicate a role for antigen in promoting chronic lymphocytic leukemia. J Exp Med. 2004;200(4):519–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ghiotto F, Fais F, Valetto A, Albesiano E, Hashimoto S, Dono M, Ikematsu H, Allen SL, Kolitz J, Rai KR, et al. Remarkably similar antigen receptors among a subset of patients with chronic lymphocytic leukemia. J Clin Invest. 2004;113(7):1008–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chu CC, Catera R, Hatzi K, Yan XJ, Zhang L, Wang XB, Fales HM, Allen SL, Kolitz JE, Rai KR, et al. Chronic lymphocytic leukemia antibodies with a common stereotypic rearrangement recognize nonmuscle myosin heavy chain IIA. Blood. 2008;112(13):5122–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Catera R, Silverman GJ, Hatzi K, Seiler T, Didier S, Zhang L, Herve M, Meffre E, Oscier DG, Vlassara H, et al. Chronic lymphocytic leukemia cells recognize conserved epitopes associated with apoptosis and oxidation. Mol Med. 2008;14(11–12):665–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Stamatopoulos B, Meuleman N, Haibe-Kains B, Saussoy P, Van Den Neste E, Michaux L, Heimann P, Martiat P, Bron D, Lagneaux L. microRNA-29c and microRNA-223 down-regulation has in vivo significance in chronic lymphocytic leukemia and improves disease risk stratification. Blood. 2009;113(21):5237–45.

    Article  CAS  PubMed  Google Scholar 

  40. Kirkham PM, Mortari F, Newton JA, Schroeder HW Jr. Immunoglobulin VH clan and family identity predicts variable domain structure and may influence antigen binding. EMBO J. 1992;11(2):603–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Stamatopoulos K, Agathangelidis A, Rosenquist R, Ghia P. Antigen receptor stereotypy in chronic lymphocytic leukemia. Leukemia. 2017;31(2):282–91.

    Article  CAS  PubMed  Google Scholar 

  42. Agathangelidis A, Vardi A, Baliakas P, Stamatopoulos K. Stereotyped B-cell receptors in chronic lymphocytic leukemia. Leuk Lymphoma. 2014;55(10):2252–61.

    Article  CAS  PubMed  Google Scholar 

  43. Krober A, Seiler T, Benner A, Bullinger L, Bruckle E, Lichter P, Dohner H, Stilgenbauer S. V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood. 2002;100(4):1410–6.

    CAS  PubMed  Google Scholar 

  44. Stamatopoulos K, Belessi C, Moreno C, Boudjograh M, Guida G, Smilevska T, Belhoul L, Stella S, Stavroyianni N, Crespo M, et al. Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: Pathogenetic implications and clinical correlations. Blood. 2007;109(1):259–70.

    Article  CAS  PubMed  Google Scholar 

  45. Murray F, Darzentas N, Hadzidimitriou A, Tobin G, Boudjogra M, Scielzo C, Laoutaris N, Karlsson K, Baran-Marzsak F, Tsaftaris A, et al. Stereotyped patterns of somatic hypermutation in subsets of patients with chronic lymphocytic leukemia: implications for the role of antigen selection in leukemogenesis. Blood. 2008;111(3):1524–33.

    Article  CAS  PubMed  Google Scholar 

  46. Bomben R, Dal Bo M, Capello D, Forconi F, Maffei R, Laurenti L, Rossi D, Del Principe MI, Zucchetto A, Bertoni F, et al. Molecular and clinical features of chronic lymphocytic leukaemia with stereotyped B cell receptors: results from an Italian multicentre study. Br J Haematol. 2009;144(4):492–506.

    Article  PubMed  Google Scholar 

  47. Dal-Bo M, Del Giudice I, Bomben R, Capello D, Bertoni F, Forconi F, Laurenti L, Rossi D, Zucchetto A, Pozzato G, et al. B-cell receptor, clinical course and prognosis in chronic lymphocytic leukaemia: the growing saga of the IGHV3 subgroup gene usage. Br J Haematol. 2011;153(1):3–14.

    Article  CAS  PubMed  Google Scholar 

  48. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L, Dohner K, Bentz M, Lichter P. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910–6.

    Article  CAS  PubMed  Google Scholar 

  49. Baliakas P, Mattsson M, Stamatopoulos K, Rosenquist R. Prognostic indices in chronic lymphocytic leukaemia: where do we stand how do we proceed? J Intern Med. 2015.

    Google Scholar 

  50. Bystry V, Agathangelidis A, Bikos V, Sutton LA, Baliakas P, Hadzidimitriou A, Stamatopoulos K, Darzentas N. ARResT/AssignSubsets: a novel application for robust subclassification of chronic lymphocytic leukemia based on B cell receptor IG stereotypy. Bioinformatics. 2015;31(23):3844–6.

    CAS  PubMed  Google Scholar 

  51. DeFranco AL. The complexity of signaling pathways activated by the BCR. Curr Opin Immunol. 1997;9(3):296–308.

    Article  CAS  PubMed  Google Scholar 

  52. Yefenof E, Sanders VM, Uhr JW, Vitetta ES. In vitro activation of murine antigen-specific memory B cells by a T-dependent antigen. J Immunol. 1986;137(1):85–90.

    CAS  PubMed  Google Scholar 

  53. Tangye SG, Avery DT, Deenick EK, Hodgkin PD. Intrinsic differences in the proliferation of naive and memory human B cells as a mechanism for enhanced secondary immune responses. J Immunol. 2003;170(2):686–94.

    Article  CAS  PubMed  Google Scholar 

  54. Gauld SB, Merrell KT, Cambier JC. Silencing of autoreactive B cells by anergy: a fresh perspective. Curr Opin Immunol. 2006;18(3):292–7.

    Article  CAS  PubMed  Google Scholar 

  55. Vilen BJ, Nakamura T, Cambier JC. Antigen-stimulated dissociation of BCR mIg from Ig-alpha/Ig-beta: implications for receptor desensitization. Immunity. 1999;10(2):239–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu W, Meckel T, Tolar P, Sohn HW, Pierce SK. Antigen affinity discrimination is an intrinsic function of the B cell receptor. J Exp Med. 2010;207(5):1095–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang J, Reth M. Oligomeric organization of the B-cell antigen receptor on resting cells. Nature. 2010;467(7314):465–9.

    Article  CAS  PubMed  Google Scholar 

  58. Rolli V, Gallwitz M, Wossning T, Flemming A, Schamel WW, Zurn C, Reth M. Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol Cell. 2002;10(5):1057–69.

    Article  CAS  PubMed  Google Scholar 

  59. Lowell CA. Src-family kinases: rheostats of immune cell signaling. Mol Immunol. 2004;41(6–7):631–43.

    Article  CAS  PubMed  Google Scholar 

  60. Kurosaki T, Hikida M. Tyrosine kinases and their substrates in B lymphocytes. Immunol Rev. 2009;228(1):132–48.

    Article  CAS  PubMed  Google Scholar 

  61. Gold MR, Matsuuchi L, Kelly RB, DeFranco AL. Tyrosine phosphorylation of components of the B-cell antigen receptors following receptor crosslinking. Proc Natl Acad Sci U S A. 1991;88(8):3436–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Reth M. Antigen receptor tail clue. Nature. 1989;338(6214):383–4.

    Article  CAS  PubMed  Google Scholar 

  63. Humphrey MB, Lanier LL, Nakamura MC. Role of ITAM-containing adapter proteins and their receptors in the immune system and bone. Immunol Rev. 2005;208:50–65.

    Article  CAS  PubMed  Google Scholar 

  64. Isakov N. ITAMs: immunoregulatory scaffolds that link immunoreceptors to their intracellular signaling pathways. Receptors Channels. 1998;5(5):243–53.

    CAS  PubMed  Google Scholar 

  65. Fruman DA, Satterthwaite AB, Witte ON. Xid-like phenotypes: a B cell signalosome takes shape. Immunity. 2000;13(1):1–3.

    Article  CAS  PubMed  Google Scholar 

  66. Fu C, Turck CW, Kurosaki T, Chan AC. BLNK: a central linker protein in B cell activation. Immunity. 1998;9(1):93–103.

    Article  CAS  PubMed  Google Scholar 

  67. Ishiai M, Kurosaki M, Pappu R, Okawa K, Ronko I, Fu C, Shibata M, Iwamatsu A, Chan AC, Kurosaki T. BLNK required for coupling Syk to PLC gamma 2 and Rac1-JNK in B cells. Immunity. 1999;10(1):117–25.

    Article  CAS  PubMed  Google Scholar 

  68. Niiro H, Clark EA. Regulation of B-cell fate by antigen-receptor signals. Nat Rev Immunol. 2002;2(12):945–56.

    Article  CAS  PubMed  Google Scholar 

  69. Depoil D, Fleire S, Treanor BL, Weber M, Harwood NE, Marchbank KL, Tybulewicz VL, Batista FD. CD19 is essential for B cell activation by promoting B cell receptor-antigen microcluster formation in response to membrane-bound ligand. Nat Immunol. 2008;9(1):63–72.

    Article  CAS  PubMed  Google Scholar 

  70. Inabe K, Ishiai M, Scharenberg AM, Freshney N, Downward J, Kurosaki T. Vav3 modulates B cell receptor responses by regulating phosphoinositide 3-kinase activation. J Exp Med. 2002;195(2):189–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Doody GM, Bell SE, Vigorito E, Clayton E, McAdam S, Tooze R, Fernandez C, Lee IJ, Turner M. Signal transduction through Vav-2 participates in humoral immune responses and B cell maturation. Nat Immunol. 2001;2(6):542–7.

    Article  CAS  PubMed  Google Scholar 

  72. Bijsterbosch MK, Meade CJ, Turner GA, Klaus GG. B lymphocyte receptors and polyphosphoinositide degradation. Cell. 1985;41(3):999–1006.

    Article  CAS  PubMed  Google Scholar 

  73. Cheng PC, Dykstra ML, Mitchell RN, Pierce SK. A role for lipid rafts in B cell antigen receptor signaling and antigen targeting. J Exp Med. 1999;190(11):1549–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ingley E. Src family kinases: regulation of their activities, levels and identification of new pathways. Biochim Biophys Acta. 2008;1784(1):56–65.

    Article  CAS  PubMed  Google Scholar 

  75. Liu W, Won Sohn H, Tolar P, Meckel T, Pierce SK. Antigen-induced oligomerization of the B cell receptor is an early target of Fc gamma RIIB inhibition. J Immunol. 2010;184(4):1977–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Satterthwaite AB, Witte ON. The role of Bruton’s tyrosine kinase in B-cell development and function: a genetic perspective. Immunol Rev. 2000;175:120–7.

    Article  CAS  PubMed  Google Scholar 

  77. Sharma S, Orlowski G, Song W. Btk regulates B cell receptor-mediated antigen processing and presentation by controlling actin cytoskeleton dynamics in B cells. J Immunol. 2009;182(1):329–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yarkoni Y, Getahun A, Cambier JC. Molecular underpinning of B-cell anergy. Immunol Rev. 2010;237(1):249–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91(2):231–41.

    Article  CAS  PubMed  Google Scholar 

  80. Richards JD, Dave SH, Chou CH, Mamchak AA, DeFranco AL. Inhibition of the MEK/ERK signaling pathway blocks a subset of B cell responses to antigen. J Immunol. 2001;166(6):3855–64.

    Article  CAS  PubMed  Google Scholar 

  81. Weng WK, Jarvis L, LeBien TW. Signaling through CD19 activates Vav/mitogen-activated protein kinase pathway and induces formation of a CD19/Vav/phosphatidylinositol 3-kinase complex in human B cell precursors. J Biol Chem. 1994;269(51):32514–21.

    CAS  PubMed  Google Scholar 

  82. Hashimoto A, Okada H, Jiang A, Kurosaki M, Greenberg S, Clark EA, Kurosaki T. 3Involvement of guanosine triphosphatases and phospholipase C-gamma2 in extracellular signal-regulated kinase, c-Jun NH2-terminal kinase, and p38 mitogen-activated protein kinase activation by the B cell antigen receptor. J Exp Med. 1998;188(7):1287–95.

    Google Scholar 

  83. Giles FJ, Albitar M. Mammalian target of rapamycin as a therapeutic target in leukemia. Curr Mol Med. 2005;5(7):653–61.

    Article  CAS  PubMed  Google Scholar 

  84. Barkett M, Gilmore TD. Control of apoptosis by Rel/NF-kappaB transcription factors. Oncogene. 1999;18(49):6910–24.

    Article  CAS  PubMed  Google Scholar 

  85. Hikida M, Johmura S, Hashimoto A, Takezaki M, Kurosaki T. Coupling between B cell receptor and phospholipase C-gamma2 is essential for mature B cell development. J Exp Med. 2003;198(4):581–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tan JE, Wong SC, Gan SK, Xu S, Lam KP. The adaptor protein BLNK is required for b cell antigen receptor-induced activation of nuclear factor-kappa B and cell cycle entry and survival of B lymphocytes. J Biol Chem. 2001;276(23):20055–63.

    Article  CAS  PubMed  Google Scholar 

  87. Weil R, Israel A. T-cell-receptor- and B-cell-receptor-mediated activation of NF-kappaB in lymphocytes. Curr Opin Immunol. 2004;16(3):374–81.

    Article  CAS  PubMed  Google Scholar 

  88. Israel A. The IKK complex: an integrator of all signals that activate NF-kappaB? Trends Cell Biol. 2000;10(4):129–33.

    Article  CAS  PubMed  Google Scholar 

  89. Grumont RJ, Rourke IJ, O’Reilly LA, Strasser A, Miyake K, Sha W, Gerondakis S. B lymphocytes differentially use the Rel and nuclear factor kappaB1 (NF-kappaB1) transcription factors to regulate cell cycle progression and apoptosis in quiescent and mitogen-activated cells. J Exp Med. 1998;187(5):663–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Joyce D, Albanese C, Steer J, Fu M, Bouzahzah B, Pestell RG. NF-kappaB and cell-cycle regulation: the cyclin connection. Cytokine Growth Factor Rev. 2001;12(1):73–90.

    Article  CAS  PubMed  Google Scholar 

  91. Healy JI, Dolmetsch RE, Timmerman LA, Cyster JG, Thomas ML, Crabtree GR, Lewis RS, Goodnow CC. Different nuclear signals are activated by the B cell receptor during positive versus negative signaling. Immunity. 1997;6(4):419–28.

    Article  CAS  PubMed  Google Scholar 

  92. Stevenson FK, Sahota SS, Ottensmeier CH, Zhu D, Forconi F, Hamblin TJ. The occurrence and significance of V gene mutations in B cell-derived human malignancy. Adv Cancer Res. 2001;83:81–116.

    Article  CAS  PubMed  Google Scholar 

  93. Kipps TJ, Carson DA. Autoantibodies in chronic lymphocytic leukemia and related systemic autoimmune diseases. Blood. 1993;81(10):2475–87.

    CAS  PubMed  Google Scholar 

  94. Borche L, Lim A, Binet JL, Dighiero G. Evidence that chronic lymphocytic leukemia B lymphocytes are frequently committed to production of natural autoantibodies. Blood. 1990;76(3):562–9.

    CAS  PubMed  Google Scholar 

  95. Slupsky JR. Does B cell receptor signaling in chronic lymphocytic leukaemia cells differ from that in other B cell types? Scientifica. 2014;2014:208928.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Brink R, Goodnow CC, Crosbie J, Adams E, Eris J, Mason DY, Hartley SB, Basten A. Immunoglobulin M and D antigen receptors are both capable of mediating B lymphocyte activation, deletion, or anergy after interaction with specific antigen. J Exp Med. 1992;176(4):991–1005.

    Article  CAS  PubMed  Google Scholar 

  97. Caligaris-Cappio F. B-chronic lymphocytic leukemia: a malignancy of anti-self B cells. Blood. 1996;87(7):2615–20.

    CAS  PubMed  Google Scholar 

  98. Ternynck T, Dighiero G, Follezou J, Binet JL. Comparison of normal and CLL lymphocyte surface Ig determinants using peroxidase-labeled antibodies. I. Detection and quantitation of light chain determinants. Blood. 1974;43(6):789–95.

    CAS  PubMed  Google Scholar 

  99. Chen YH, Heller P. Lymphocyte surface immunoglobulin density and immunoglobulin secretion in vitro in chronic lymphocytic leukemia (CLL). Blood. 1978;52(3):601–8.

    CAS  PubMed  Google Scholar 

  100. Eskeland T, Klein E, Inoue M, Johansson B. Characterization of immunoglobulin structures from the surface of chronic lymphocytic leukemia cells. J Exp Med. 1971;134(1):265–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Vuillier F, Dumas G, Magnac C, Prevost MC, Lalanne AI, Oppezzo P, Melanitou E, Dighiero G, Payelle-Brogard B. Lower levels of surface B-cell-receptor expression in chronic lymphocytic leukemia are associated with glycosylation and folding defects of the mu and CD79a chains. Blood. 2005;105(7):2933–40.

    Article  CAS  PubMed  Google Scholar 

  102. Alfarano A, Indraccolo S, Circosta P, Minuzzo S, Vallario A, Zamarchi R, Fregonese A, Calderazzo F, Faldella A, Aragno M, et al. An alternatively spliced form of CD79b gene may account for altered B-cell receptor expression in B-chronic lymphocytic leukemia. Blood. 1999;93(7):2327–35.

    CAS  PubMed  Google Scholar 

  103. Lankester AC, van Schijndel GM, van der Schoot CE, van Oers MH, van Noesel CJ, van Lier RA. Antigen receptor nonresponsiveness in chronic lymphocytic leukemia B cells. Blood. 1995;86(3):1090–7.

    CAS  PubMed  Google Scholar 

  104. Contri A, Brunati AM, Trentin L, Cabrelle A, Miorin M, Cesaro L, Pinna LA, Zambello R, Semenzato G, Donella-Deana A. Chronic lymphocytic leukemia B cells contain anomalous Lyn tyrosine kinase, a putative contribution to defective apoptosis. J Clin Invest. 2005;115(2):369–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Furman RR, Asgary Z, Mascarenhas JO, Liou HC, Schattner EJ. Modulation of NF-kappa B activity and apoptosis in chronic lymphocytic leukemia B cells. J Immunol. 2000;164(4):2200–6.

    Article  CAS  PubMed  Google Scholar 

  106. Muzio M, Apollonio B, Scielzo C, Frenquelli M, Vandoni I, Boussiotis V, Caligaris-Cappio F, Ghia P. Constitutive activation of distinct BCR-signaling pathways in a subset of CLL patients: a molecular signature of anergy. Blood. 2008;112(1):188–95.

    Article  CAS  PubMed  Google Scholar 

  107. Cesano A, Perbellini O, Evensen E, Chu CC, Cioffi F, Ptacek J, Damle RN, Chignola R, Cordeiro J, Yan XJ, et al. Association between B-cell receptor responsiveness and disease progression in B-cell chronic lymphocytic leukemia: results from single cell network profiling studies. Haematologica. 2013;98(4):626–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nedellec S, Renaudineau Y, Bordron A, Berthou C, Porakishvili N, Lydyard PM, Pers JO, Youinou P. B cell response to surface IgM cross-linking identifies different prognostic groups of B-chronic lymphocytic leukemia patients. J Immunol. 2005;174(6):3749–56.

    Article  CAS  PubMed  Google Scholar 

  109. Mockridge CI, Potter KN, Wheatley I, Neville LA, Packham G, Stevenson FK. Reversible anergy of sIgM-mediated signaling in the two subsets of CLL defined by VH-gene mutational status. Blood. 2007;109(10):4424–31.

    Article  CAS  PubMed  Google Scholar 

  110. Herishanu Y, Perez-Galan P, Liu D, Biancotto A, Pittaluga S, Vire B, Gibellini F, Njuguna N, Lee E, Stennett L, et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood. 2011;117(2):563–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chen L, Apgar J, Huynh L, Dicker F, Giago-McGahan T, Rassenti L, Weiss A, Kipps TJ. ZAP-70 directly enhances IgM signaling in chronic lymphocytic leukemia. Blood. 2005;105(5):2036–41.

    Article  CAS  PubMed  Google Scholar 

  112. Guarini A, Chiaretti S, Tavolaro S, Maggio R, Peragine N, Citarella F, Ricciardi MR, Santangelo S, Marinelli M, De Propris MS, et al. BCR ligation induced by IgM stimulation results in gene expression and functional changes only in IgV H unmutated chronic lymphocytic leukemia (CLL) cells. Blood. 2008;112(3):782–92.

    Article  CAS  PubMed  Google Scholar 

  113. Binder M, Muller F, Jackst A, Lechenne B, Pantic M, Bacher U, Zu Eulenburg C, Veelken H, Mertelsmann R, Pasqualini R, et al. B-cell receptor epitope recognition correlates with the clinical course of chronic lymphocytic leukemia. Cancer. 2011;117(9):1891–900.

    Article  CAS  PubMed  Google Scholar 

  114. Krysov S, Potter KN, Mockridge CI, Coelho V, Wheatley I, Packham G, Stevenson FK. Surface IgM of CLL cells displays unusual glycans indicative of engagement of antigen in vivo. Blood. 2010;115(21):4198–205.

    Article  CAS  PubMed  Google Scholar 

  115. Rosenwald A, Alizadeh AA, Widhopf G, Simon R, Davis RE, Yu X, Yang L, Pickeral OK, Rassenti LZ, Powell J, et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med. 2001;194(11):1639–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chen L, Widhopf G, Huynh L, Rassenti L, Rai KR, Weiss A, Kipps TJ. Expression of ZAP-70 is associated with increased B-cell receptor signaling in chronic lymphocytic leukemia. Blood. 2002;100(13):4609–14.

    Article  CAS  PubMed  Google Scholar 

  117. Lanham S, Hamblin T, Oscier D, Ibbotson R, Stevenson F, Packham G. Differential signaling via surface IgM is associated with VH gene mutational status and CD38 expression in chronic lymphocytic leukemia. Blood. 2003;101(3):1087–93.

    Article  CAS  PubMed  Google Scholar 

  118. Coscia M, Pantaleoni F, Riganti C, Vitale C, Rigoni M, Peola S, Castella B, Foglietta M, Griggio V, Drandi D, et al. IGHV unmutated CLL B cells are more prone to spontaneous apoptosis and subject to environmental prosurvival signals than mutated CLL B cells. Leukemia. 2011;25(5):828–37.

    Article  CAS  PubMed  Google Scholar 

  119. Scupoli MT, Pizzolo G. Signaling pathways activated by the B-cell receptor in chronic lymphocytic leukemia. Expert Rev Hematol. 2012;5(3):341–8.

    Article  CAS  PubMed  Google Scholar 

  120. Petlickovski A, Laurenti L, Li X, Marietti S, Chiusolo P, Sica S, Leone G, Efremov DG. Sustained signaling through the B-cell receptor induces Mcl-1 and promotes survival of chronic lymphocytic leukemia B cells. Blood. 2005;105(12):4820–7.

    Article  CAS  PubMed  Google Scholar 

  121. Kipling D. Telomerase: immortality enzyme or oncogene? Nat Genet. 1995;9(2):104–6.

    Article  CAS  PubMed  Google Scholar 

  122. Igarashi H, Sakaguchi N. Telomerase activity is induced in human peripheral B lymphocytes by the stimulation to antigen receptor. Blood. 1997;89(4):1299–307.

    CAS  PubMed  Google Scholar 

  123. Damle RN, Batliwalla FM, Ghiotto F, Valetto A, Albesiano E, Sison C, Allen SL, Kolitz J, Vinciguerra VP, Kudalkar P, et al. Telomere length and telomerase activity delineate distinctive replicative features of the B-CLL subgroups defined by immunoglobulin V gene mutations. Blood. 2004;103(2):375–82.

    Article  CAS  PubMed  Google Scholar 

  124. Martens UM, Brass V, Sedlacek L, Pantic M, Exner C, Guo Y, Engelhardt M, Lansdorp PM, Waller CF, Lange W. Telomere maintenance in human B lymphocytes. Br J Haematol. 2002;119(3):810–8.

    Article  CAS  PubMed  Google Scholar 

  125. Klein U, Tu Y, Stolovitzky GA, Mattioli M, Cattoretti G, Husson H, Freedman A, Inghirami G, Cro L, Baldini L, et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med. 2001;194(11):1625–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Damle RN, Temburni S, Banapour T, Paul S, Mongini PK, Allen SL, Kolitz JE, Rai KR, Chiorazzi N. T-cell independent, B-cell receptor-mediated induction of telomerase activity differs among IGHV mutation-based subgroups of chronic lymphocytic leukemia patients. Blood. 2012;120(12):2438–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Woyach JA, Johnson AJ, Byrd JC. The B-cell receptor signaling pathway as a therapeutic target in CLL. Blood. 2012;120(6):1175–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rai KR, Jain P. Chronic lymphocytic leukemia (CLL)-Then and now. Am J Hematol. 2016;91(3):330–40.

    Article  CAS  PubMed  Google Scholar 

  129. Davids MS, Brown JR. Targeting the B cell receptor pathway in chronic lymphocytic leukemia. Leuk Lymphoma. 2012;53(12):2362–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Burger JA. Inhibiting B-cell receptor signaling pathways in chronic lymphocytic leukemia. Curr Hematol Malig Rep. 2012;7(1):26–33.

    Article  PubMed  Google Scholar 

  131. Efremov DG, Wiestner A, Laurenti L. Novel agents and emerging strategies for targeting the B-cell receptor pathway in CLL. Mediterr J Hematol Infect Dis. 2012;4(1):e2012067.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Ahn IE, Underbayev C, Albitar A, Herman SE, Tian X, Maric I, Arthur DC, Wake L, Pittaluga S, Yuan CM, et al. Clonal evolution leading to ibrutinib resistance in chronic lymphocytic leukemia. Blood. 2017;129(11):1469–79.

    Article  CAS  PubMed  Google Scholar 

  133. Wang ML, Rule S, Martin P, Goy A, Auer R, Kahl BS, Jurczak W, Advani RH, Romaguera JE, Williams ME, et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2013;369(6):507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D, Chang B, Li S, Pan Z, Thamm DH, Miller RA, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci U S A. 2010;107(29):13075–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Herman SE, Gordon AL, Hertlein E, Ramanunni A, Zhang X, Jaglowski S, Flynn J, Jones J, Blum KA, Buggy JJ, et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood. 2011;117(23):6287–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ponader S, Chen SS, Buggy JJ, Balakrishnan K, Gandhi V, Wierda WG, Keating MJ, O’Brien S, Chiorazzi N, Burger JA. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood. 2012;119(5):1182–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. de Rooij MF, Kuil A, Geest CR, Eldering E, Chang BY, Buggy JJ, Pals ST, Spaargaren M. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood. 2012;119(11):2590–4.

    Article  PubMed  CAS  Google Scholar 

  138. Advani RH, Buggy JJ, Sharman JP, Smith SM, Boyd TE, Grant B, Kolibaba KS, Furman RR, Rodriguez S, Chang BY, et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol. 2013;31(1):88–94.

    Article  CAS  PubMed  Google Scholar 

  139. Liu J, Fitzgerald ME, Berndt MC, Jackson CW, Gartner TK. Bruton tyrosine kinase is essential for botrocetin/VWF-induced signaling and GPIb-dependent thrombus formation in vivo. Blood. 2006;108(8):2596–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Byrd JC, Furman RR, Coutre SE, Burger JA, Blum KA, Coleman M, Wierda WG, Jones JA, Zhao W, Heerema NA, et al. Three-year follow-up of treatment-naive and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood. 2015;125(16):2497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Byrd JC, Brown JR, O’Brien S, Barrientos JC, Kay NE, Reddy NM, Coutre S, Tam CS, Mulligan SP, Jaeger U, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371(3):213–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Jain N, O’Brien S. Targeted therapies for CLL: practical issues with the changing treatment paradigm. Blood Rev. 2016;30(3):233–44.

    Article  CAS  PubMed  Google Scholar 

  143. Burger JA, Tedeschi A, Barr PM, Robak T, Owen C, Ghia P, Bairey O, Hillmen P, Bartlett NL, Li J, et al. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med. 2015;373(25):2425–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Farooqui MZ, Valdez J, Martyr S, Aue G, Saba N, Niemann CU, Herman SE, Tian X, Marti G, Soto S, et al. Ibrutinib for previously untreated and relapsed or refractory chronic lymphocytic leukaemia with TP53 aberrations: a phase 2, single-arm trial. Lancet Oncol. 2015;16(2):169–76.

    Article  CAS  PubMed  Google Scholar 

  145. Burger JA, Keating MJ, Wierda WG, Hartmann E, Hoellenriegel J, Rosin NY, de Weerdt I, Jeyakumar G, Ferrajoli A, Cardenas-Turanzas M, et al. Safety and activity of ibrutinib plus rituximab for patients with high-risk chronic lymphocytic leukaemia: a single-arm, phase 2 study. Lancet Oncol. 2014;15(10):1090–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Jaglowski SM, Jones JA, Nagar V, Flynn JM, Andritsos LA, Maddocks KJ, Woyach JA, Blum KA, Grever MR, Smucker K, et al. Safety and activity of BTK inhibitor ibrutinib combined with ofatumumab in chronic lymphocytic leukemia: a phase 1b/2 study. Blood. 2015;126(7):842–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Brown JR, Barrientos JC, Barr PM, Flinn IW, Burger JA, Tran A, Clow F, James DF, Graef T, Friedberg JW, et al. The Bruton tyrosine kinase inhibitor ibrutinib with chemoimmunotherapy in patients with chronic lymphocytic leukemia. Blood. 2015;125(19):2915–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM, Hillmen P, Barrientos JC, Zelenetz AD, Kipps TJ, Flinn I, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014;370(11):997–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Brown JR, Byrd JC, Coutre SE, Benson DM, Flinn IW, Wagner-Johnston ND, Spurgeon SE, Kahl BS, Bello C, Webb HK, et al. Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110delta, for relapsed/refractory chronic lymphocytic leukemia. Blood. 2014;123(22):3390–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Herman SE, Gordon AL, Wagner AJ, Heerema NA, Zhao W, Flynn JM, Jones J, Andritsos L, Puri KD, Lannutti BJ, et al. Phosphatidylinositol 3-kinase-delta inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood. 2010;116(12):2078–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lannutti BJ, Meadows SA, Herman SE, Kashishian A, Steiner B, Johnson AJ, Byrd JC, Tyner JW, Loriaux MM, Deininger M, et al. CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood. 2011;117(2):591–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Buchner M, Baer C, Prinz G, Dierks C, Burger M, Zenz T, Stilgenbauer S, Jumaa H, Veelken H, Zirlik K. Spleen tyrosine kinase inhibition prevents chemokine- and integrin-mediated stromal protective effects in chronic lymphocytic leukemia. Blood. 2010;115(22):4497–506.

    Article  CAS  PubMed  Google Scholar 

  153. Herman SE, Barr PM, McAuley EM, Liu D, Wiestner A, Friedberg JW. Fostamatinib inhibits B-cell receptor signaling, cellular activation and tumor proliferation in patients with relapsed and refractory chronic lymphocytic leukemia. Leukemia. 2013;27(8):1769–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Braselmann S, Taylor V, Zhao H, Wang S, Sylvain C, Baluom M, Qu K, Herlaar E, Lau A, Young C, et al. R406, an orally available spleen tyrosine kinase inhibitor blocks fc receptor signaling and reduces immune complex-mediated inflammation. J Pharmacol Exp Ther. 2006;319(3):998–1008.

    Article  CAS  PubMed  Google Scholar 

  155. Hoellenriegel J, Coffey GP, Sinha U, Pandey A, Sivina M, Ferrajoli A, Ravandi F, Wierda WG, O’Brien S, Keating MJ, et al. Selective, novel spleen tyrosine kinase (Syk) inhibitors suppress chronic lymphocytic leukemia B-cell activation and migration. Leukemia. 2012;26(7):1576–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Friedberg JW, Sharman J, Sweetenham J, Johnston PB, Vose JM, Lacasce A, Schaefer-Cutillo J, De Vos S, Sinha R, Leonard JP, et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood. 2010;115(13):2578–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Renner C, Zinzani PL, Gressin R, Klingbiel D, Dietrich PY, Hitz F, Bargetzi M, Mingrone W, Martinelli G, Trojan A, et al. A multicenter phase II trial (SAKK 36/06) of single-agent everolimus (RAD001) in patients with relapsed or refractory mantle cell lymphoma. Haematologica. 2012;97(7):1085–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zent CS, LaPlant BR, Johnston PB, Call TG, Habermann TM, Micallef IN, Witzig TE. The treatment of recurrent/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL) with everolimus results in clinical responses and mobilization of CLL cells into the circulation. Cancer. 2010;116(9):2201–7.

    PubMed  PubMed Central  Google Scholar 

  159. Abrisqueta P, Crespo M, Bosch F. Personalizing treatment for chronic lymphocytic leukemia. Expert Rev Hematol. 2011;4(1):27–35.

    Article  PubMed  Google Scholar 

  160. Dameshek W. Chronic lymphocytic leukemia—an accumulative disease of immunolgically incompetent lymphocytes. Blood. 1967;29(4):Suppl:566–84.

    CAS  Google Scholar 

  161. Messmer BT, Messmer D, Allen SL, Kolitz JE, Kudalkar P, Cesar D, Murphy EJ, Koduru P, Ferrarini M, Zupo S, et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest. 2005;115(3):755–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, P. (2018). B-Cell Receptors. In: Chronic Lymphocytic Leukemia . Molecular and Translational Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-70603-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70603-0_3

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-70602-3

  • Online ISBN: 978-3-319-70603-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics