Skip to main content

Disassembly Planning and Assessment of Automation Potentials for Lithium-Ion Batteries

  • Chapter
  • First Online:
Recycling of Lithium-Ion Batteries

Abstract

Traction batteries are composed of various materials that are both economic valuable and environmentally relevant. Being able to recover these materials while preserving its quality is not only economically attractive, but it can also contribute to decrease the environmental impact of electric vehicles. Disassembly can play in this regard a key role. On the one hand it might allow to separate potential hazardous substances and avoid an uncontrolled distribution of these substances into other material flows. One the other hand disassembly might promote improving the rate of material recovered while preserving its quality and decreasing disassembly costs. In this chapter we present a methodology for the estimation of disassembly sequences and for the estimation of automation potentials for the disassembly of traction batteries. The methodology is illustrated with an experimental case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This section is mostly based on the results presented in the research of Wegener et al. (2014) which correspond to part of the work done within LithoRec.

References

  • Duflou JR, Seliger G, Kara S, Umeda Y, Ometto a, Willems B (2008) Efficiency and feasibility of product disassembly: a case-based study. CIRP Ann Manuf Technol 57(2):583–600. https://doi.org/10.1016/j.cirp.2008.09.009

    Article  Google Scholar 

  • Dunn JB, Gaines L, Kelly JC, James C, Gallagher KG (2014) The significance of li-ion batteries in electric vehicle life-cycle energy and emissions and recycling’s role in its reduction. Energy Environ Sci 8:158–68. Royal Society of Chemistry. doi:https://doi.org/10.1039/C4EE03029J

  • GĂ¼ngör A (1999) Algorithmic models for analysis of disassembly processes and systems. PhD thesis, Massachusetts

    Google Scholar 

  • GĂ¼ngör A, Gupta SM, Pochampally K, Kamarthi SV (2000) Complications in disassembly line balancing. In: Proceedings of the SPIE international conference on environmentally conscious manufacturing, vol 4193. pp 289–298

    Google Scholar 

  • Hartel M, Lotter B (2006) Planung und Bewertung von Montagesystemen. In: Lotter B, Wiendahl HP (eds) Montage in der industriellen Produktion (chap 13). Springer, Berlin, pp 407–431

    Google Scholar 

  • Hawkins Troy R, Singh Bhawna, Majeau-Bettez Guillaume, Strømman Anders Hammer (2013) Comparative environmental life cycle assessment of conventional and electric vehicles. J Ind Ecol 17(1):53–64. https://doi.org/10.1111/j.1530-9290.2012.00532.x

    Article  Google Scholar 

  • Herrmann C (2003) Unterstuetzung der Entwicklung recyclinggerechter Produkte. Vulkan-Verlag, Essen

    Google Scholar 

  • Herrmann C, Raatz A, Mennenga M, Schmitt J, Andrew S (2012) Assessment of automation potentials for the disassembly of automotive lithium ion battery systems. In: Dornfeld D, Linke B (eds) Leveraging technology for a sustainable world. Springer, Berlin, Heidelberg

    Google Scholar 

  • Herrmann C, Raatz A, Andrew S, Schmitt J (2014) Scenario-based development of disassembly systems for automotive lithium ion battery systems. Adv Mater Res 907:391–401. https://doi.org/10.4028/www.scientific.net/AMR.907.391

  • Johnson M, Wang M (1998) Economical evaluation of disassembly operations for recycling, remanufacturing and reuse. Int J Prod Res 36(12):3227–3252

    Article  MATH  Google Scholar 

  • Kriwet A (1995) Bewertungsmethodik fĂ¼r die recyclinggerechte Produktgestaltung. Dissertation, Berlin, p 85ff

    Google Scholar 

  • KĂ¼hn M (2001) Demontage- und recyclingorientierte Bewertung. Dissertation, TU Braunschweig, Schriftenreihe des Instituts fĂ¼r Werkzeugmaschinen und Fertigungstechnik, Vulkan-Verlag, Essen

    Google Scholar 

  • Lambert AJD (2003) Disassembly sequencing: a survey. Int J Prod Res:37–41 (November 2014)

    Google Scholar 

  • Lupi C, Pasquali M, Dell’Era A (2004) Nickel and cobalt recycling from lithium-ion batteries by electrochemical processes. Waste Manag 25:215–220

    Article  Google Scholar 

  • Mascle C (2002) A system life-cycle model for disassembly-assembly line design. In: Proceedings of the 15th triennial world congress of the international federation of automatic control, Barcelona, 21–26 July 2002

    Google Scholar 

  • Moore KE, Gungor A, Gupta SM (1998a) Disassembly process planning using petri nets. In: Proceedings of the IEEE international symposium on electronics and the environment, Oak Brook, pp 88–93

    Google Scholar 

  • Moore KE, Gungor A, Gupta SM (1998b) Disassembly petri net generation in the presence of XOR precedence relationships. In: Proceedings of the IEEE international conference on systems, man, and cybernetics, San Diego, California, pp 13–18, 11–14 Oct 1998

    Google Scholar 

  • Nan J, Han D, Zuo X (2005) Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction. J Power Sources 152:278–284

    Article  Google Scholar 

  • Rudolph A (1999) Altproduktentsorgung aus betriebswirtschaftlicher Sicht. Physica-Verlag, Heidelberg

    Book  Google Scholar 

  • Scheuerer A (1995) Beiträge zur Steuerung des betrieblichen Recyclings unter besonderer BerĂ¼cksichtigung eines Informationssystems zur UnterstĂ¼tzung von Demontageprozessen. Dissertation, Universität Erlangen-NĂ¼rnberg

    Google Scholar 

  • Sundin E (2004) Product and process design for successful remanufacturing. Dissertation, Linköpings Universitet

    Google Scholar 

  • Swain B, Jeong J, Lee J-C, Lee G-H, Sohn J-S (2007) Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries. J Power Sources 167(2):536–544

    Article  Google Scholar 

  • United Nations University—Step Initiative (2014) “Solving the E-waste problem (step) white paper: one global definition of E-waste, June, United Nations University. http://collections.unu.edu/view/UNU:6120#.WcfUdFj4Kpw.mendeley

  • Veerakamolmal P (1999) Design and analysis of disassembly and remanufacturing systems in the electronics industry. PhD thesis, Massachusetts

    Google Scholar 

  • Vongbunyong S, Chen WH (2015) Disassembly automation. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-15183-0

    Google Scholar 

  • Wegener K, Andrew S, Raatz A, Dröder K, Herrmann C (2014) Disassembly of electric vehicle batteries using the example of the Audi Q5 hybrid system. Procedia CIRP 23(C):155–60. doi:https://doi.org/10.1016/j.procir.2014.10.098

  • Zhou MC, Zussmann E (1998) Design and implementation of disassembly petri nets for intelligent process planning. In: Technical report 0108-98, Multilifecycle Engineering Research Center, NJIT, 20 July 1998

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Cerdas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cerdas, F. et al. (2018). Disassembly Planning and Assessment of Automation Potentials for Lithium-Ion Batteries. In: Kwade, A., Diekmann, J. (eds) Recycling of Lithium-Ion Batteries. Sustainable Production, Life Cycle Engineering and Management. Springer, Cham. https://doi.org/10.1007/978-3-319-70572-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70572-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70571-2

  • Online ISBN: 978-3-319-70572-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics