Skip to main content

Hydrometallurgical Processing and Thermal Treatment of Active Materials

  • Chapter
  • First Online:
Recycling of Lithium-Ion Batteries

Abstract

In this chapter, electrodes containing the cathode material Li[Ni0.33Co0.33Mn0.33]O2 (NCM) were recycled in order to test a newly developed recycling concept which is aiming towards commercial application. The possibility of graphite recovery from spent LIBs by means of three different treatment methods is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cançado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhães-Paniago R, Pimenta MA (2006) General equation for the determination of the crystallite size La of Nanographite by Raman Spectroscopy. Applied Physics Letters 88(16):163106. doi:http://dx.doi.org/10.1063/1.2196057

  • Castillo S, Ansart F, Laberty-Robert C, Portal J (2002) Advances in the recovering of spent lithium battery compounds. J Power Sources 112(1):247–254

    Article  Google Scholar 

  • Collins J, Gourdin G, Foster M, Qu D (2015) Carbon surface functionalities and SEI formation during Li Intercalation. Carbon 92(1):193–244. doi:http://dx.doi.org/10.1016/j.carbon.2015.04.007

  • Dippel C, Krueger S, Kraft V, Nowak S, Winter M, Li J (2013) Aging stability of Li2FeSiO4 polymorphs in LiPF6 containing organic electrolyte for lithium-ion batteries. Electrochimica Acta 105:542–546. doi:http://dx.doi.org/10.1016/j.electacta.2013.05.013

  • Dorella G, Mansur MB (2007) A study of the separation of cobalt from spent Li-ion battery residues. J Power Sources 170(1):210–215

    Article  Google Scholar 

  • Ferreira DA, Prados LMZ, Majuste D, Mansur MB (2009) Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries. J Power Sources 187(1):238–246. doi:http://dx.doi.org/10.1016/j.jpowsour.2008.10.077

  • Figueiredo JL, Pereira MFR, Freitas MMA, Órfão JJM (1999) Modification of the surface chemistry of activated carbons. Carbon 37(9):1379–1389. doi:http://dx.doi.org/10.1016/S0008-6223(98)00333-9

  • Fuente E, Menéndez JA, Suárez D, Montes-Morán MA (2003) Basic surface oxides on carbon materials: a global view. Langmuir 19(8):3505–3511. https://doi.org/10.1021/la026778a

    Article  Google Scholar 

  • Georgi-Maschler T, Friedrich B, Weyhe R, Heegn H, Rutz M (2012) Development of a recycling process for Li-ion batteries. J Power Sources 207:173–182. doi:http://dx.doi.org/10.1016/j.jpowsour.2012.01.152

  • Grützke M, Kraft V, Weber W, Wendt C, Friesen A, Klamor S, Winter M, Nowak S (2014) Supercritical carbon dioxide extraction of Lithium-Ion battery electrolytes. J Supercrit Fluids 94(1):216–222. doi:http://dx.doi.org/10.1016/j.supflu.2014.07.014

  • Grutzke M, Monnighoff X, Horsthemke F, Kraft V, Winter M, Nowak S (2015) Extraction of Lithium-Ion battery electrolytes with liquid and supercritical carbon dioxide and additional solvents. RSC Adv 5(54):43209–43217. https://doi.org/10.1039/c5ra04451k

    Article  Google Scholar 

  • Hanisch C, Haselrieder W, Kwade A (2011) Recovery of active materials from spent Lithium-Ion electrodes and electrode production rejects. In: Hesselbach J, Herrmann C (eds) Globalized solutions for sustainability in manufacturing. Springer Berlin Heidelberg, pp 85–89. doi:10.1007/978-3-642-19692-8_15

  • Jorio A, Saito R, Dresselhaus G, Dresselhaus MS (2011) Raman Spectroscopy: From Graphite to sp2 Nanocarbons. In: Jorio A, Saito R, Dresselhaus G, Dresselhaus MS (eds) Raman Spectroscopy in Graphene Related Systems. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 73–101. doi:10.1002/9783527632695.ch4

  • Kasnatscheew J, Evertz M, Streipert B, Wagner R, Klopsch R, Vortmann B, Hahn H, Nowak S, Amereller M, Gentschev AC, Lamp P, Winter M (2016) The truth about the 1st cycle coulombic efficiency of LiNi1/3Co1/3Mn1/3O2 (NCM) Cathodes. Phys Chem Chem Phys 18(5):3956–3965. https://doi.org/10.1039/c5cp07718d

    Article  Google Scholar 

  • Kohs W, Hofer F, Schrötner H, Doninger J, Barsukov I, Albering JH, Besenhard JO, Winter M (2003) Graphite’s crystallinity influences on anodes electrochemical properties in Lithium-Ion Cells. In: Julien CM, Prakash J (eds) New trends in intercalation compounds for energy storage and conversion: proceedings of the international symposium, vol 2003–20. Electrochemical Society, Pennington

    Google Scholar 

  • Kraft V, Grützke M, Weber W, Menzel J, Wiemers-Meyer S, Winter M, Nowak S (2015) Two-dimensional ion chromatography for the separation of ionic organophosphates generated in thermally decomposed Lithium Hexafluorophosphate-based Lithium-Ion battery electrolytes. J Chromatogr A 1409(1):201–209. doi:http://dx.doi.org/10.1016/j.chroma.2015.07.054

  • Krüger S, Hanisch C, Kwade A, Winter M, Nowak S (2014) Effect of impurities caused by a recycling process on the electrochemical performance of Li[Ni0.33Co0.33Mn0.33]O2. J Electroanal Chem 726(1):91–96. doi:http://dx.doi.org/10.1016/j.jelechem.2014.05.017

  • Li L, Ge J, Wu F, Chen R, Chen S, Wu B (2010) Recovery of cobalt and lithium from spent Lithium ion batteries using organic citric acid as leachant. J Hazard Mater 176(1–3):288–293. doi:http://dx.doi.org/10.1016/j.jhazmat.2009.11.026

  • Li L, Lu J, Ren Y, Zhang XX, Chen RJ, Wu F, Amine K (2012) Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries. J Power Sources 218:21–27

    Article  Google Scholar 

  • Lu W, Chung DDL (2001) Anodic performance of vapor-derived carbon filaments in Lithium-Ion secondary battery. Carbon 39(4):493–496. doi:http://dx.doi.org/10.1016/S0008-6223(00)00157-3

  • Lux SF, Lucas IT, Pollak E, Passerini S, Winter M, Kostecki R (2012) The mechanism of HF formation in LiPF6 based organic carbonate electrolytes. Electrochem Commun 14(1):47–50. https://doi.org/10.1016/j.elecom.2011.10.026

    Article  Google Scholar 

  • Contestabile M, Panero S, Scrosati B (1999) A laboratory-scale lithium batterie recycling process. J Power Sources 83:4

    Article  Google Scholar 

  • Pu N-W, Wang C-A, Sung Y, Liu Y-M, Ger M-D (2009) Production of few-layer graphene by supercritical CO2 exfoliation of Graphite. Mater Lett 63(23):1987–1989. doi:http://dx.doi.org/10.1016/j.matlet.2009.06.031

  • Rothermel S, Evertz M, Kasnatscheew J, Qi X, Grützke M, Winter M, Nowak S (2016) Graphite recycling from spent Lithium ion batteries. ChemSusChem [accepted]. doi:10.1002/cssc.201601062

  • Saeki S, Lee J, Zhang Q, Saito F (2004) Co-grinding LiCoO2 with PVC and water leaching of metal chlorides formed in ground product. Int J Mineral Process 74, Supplement (0):S373–S378. doi:http://dx.doi.org/10.1016/j.minpro.2004.08.002

  • Shin SM, Kim NH, Sohn JS, Yang DH, Kim YH (2005) Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy 79(3–4):172–181. doi:http://dx.doi.org/10.1016/j.hydromet.2005.06.004

  • Shu J, Shui M, Xu D, Wang D, Ren Y, Gao S (2011) A comparative study of overdischarge behaviors of cathode materials for Lithium-ion batteries. J Solid State Electrochem 16(2):819–824. https://doi.org/10.1007/s10008-011-1484-7

    Article  Google Scholar 

  • Stuart BH (2007) Degradation. In: Stuart BH (ed) Analytical techniques in the sciences. Wiley, Ltd., Chichester, pp 191–208. doi:10.1002/9780470511343.ch7

  • Sun L, Qiu K (2012) Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries. Waste Manag 32(8):1575–1582

    Article  Google Scholar 

  • Xing W, Dahn JR (1997) Study of irreversible capacities for Li insertion in hard and graphitic carbons. J Electrochem Soc 144(4):1195–1201. https://doi.org/10.1149/1.1837572

    Article  Google Scholar 

  • Young K, Wang C, Wang LY, Strunz K (2013) Electric vehicle battery technologies. In: Garcia-Valle R, Peças Lopes AJ (eds) Electric vehicle integration into modern power networks. Springer New York, New York, NY, pp 15–56. doi:10.1007/978-1-4614-0134-6_2

  • Zeng G, Deng X, Luo S, Luo X, Zou J (2012) A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries. J Hazard Mater 199–200:164–169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Nowak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rothermel, S., Krüger, S., Winter, M., Nowak, S. (2018). Hydrometallurgical Processing and Thermal Treatment of Active Materials. In: Kwade, A., Diekmann, J. (eds) Recycling of Lithium-Ion Batteries. Sustainable Production, Life Cycle Engineering and Management. Springer, Cham. https://doi.org/10.1007/978-3-319-70572-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70572-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70571-2

  • Online ISBN: 978-3-319-70572-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics