Skip to main content

Local to Global Algorithms for the Gorenstein Adjoint Ideal of a Curve

  • Chapter
  • First Online:
Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory

Abstract

We present new algorithms for computing adjoint ideals of curves and thus, in the planar case, adjoint curves. With regard to terminology, we follow Gorenstein who states the adjoint condition in terms of conductors. Our main algorithm yields the Gorenstein adjoint ideal \(\mathfrak {G}\) of a given curve as the intersection of what we call local Gorenstein adjoint ideals. Since the respective local computations do not depend on each other, our approach is inherently parallel. Over the rationals, further parallelization is achieved by a modular version of the algorithm which first computes a number of the characteristic p counterparts of \(\mathfrak {G}\) and then lifts these to characteristic zero. As a key ingredient, we establish an efficient criterion to verify the correctness of the lift. Well-known applications are the computation of Riemann-Roch spaces, the construction of points in moduli spaces, and the parametrization of rational curves. We have implemented different variants of our algorithms together with Mnuk’s approach in the computer algebra system Singular and give timings to compare the performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term point will always refer to a closed point.

  2. 2.

    Recall that an ordinary multiple point of multiplicity i is a singularity where the lowest non-vanishing jet of f factors into i distinct linear factors.

  3. 3.

    The notation O(m) stands for terms of degree ≥ m.

  4. 4.

    In our context, a prime p is bad if Algorithm 3, applied to the modulo p values of the input over the rationals, does not return the reduction of the characteristic zero result.

  5. 5.

    We have to use a weighted cardinality count: when enlarging \(\mathscr {P}\), the total weight of the elements already present must be strictly smaller than the total weight of the new elements. Otherwise, though highly unlikely in practical terms, it may happen that only unlucky primes are accumulated.

References

  1. E. Arbarello, C. Ciliberto, Adjoint hypersurfaces to curves in \(\mathbb {P}^{r}\) following Petri, in Commutative Algebra. Lecture Notes in Pure and Applied Mathematics, vol. 84 (Dekker, New York, 1983), pp. 1–21

    Google Scholar 

  2. E. Arbarello, M. Cornalba, P.A. Griffiths, J. Harris, Geometry of Algebraic Curves, vol. I (Springer, Berlin, 1985)

    Google Scholar 

  3. E.A. Arnold, Modular algorithms for computing Gröbner bases. J. Symb. Comput. 35, 403–419 (2003)

    Article  MathSciNet  Google Scholar 

  4. V.I. Arnold, S.M. Gusein-Zade, A.N. Varchenko, Singularities of Differential Maps, vol. I (Birkhäuser, Basel, 1995)

    Google Scholar 

  5. J. Böhm, Parametrisierung rationaler Kurven. Diploma thesis, Institut für Mathematik und Physik der Universität Bayreuth, 1999

    Google Scholar 

  6. J. Böhm, W. Decker, S. Laplagne, G. Pfister, A. Steenpaß, S. Steidel, Parallel algorithms for normalization. J. Symb. Comput. 51, 99–114 (2013)

    Article  MathSciNet  Google Scholar 

  7. J. Böhm, W. Decker, S. Laplagne, G. Pfister, A. Steenpaß, S. Steidel, locnormal.lib - a Singular 4-1-0 library for computing integral bases of algebraic function fields. Singular distribution. http://www.singular.uni-kl.de

  8. J. Böhm, W. Decker, S. Laplagne, F. Seelisch, paraplanecurves.lib - a Singular 4-1-0 library for computing parametrizations of rational curves. Singular distribution. http://www.singular.uni-kl.de

  9. J. Böhm, W. Decker, M. Schulze, Local analysis of Grauert-Remmert-type normalization algorithms. Int. J. Algebra Comput. 24(1), 69–94 (2014)

    Article  MathSciNet  Google Scholar 

  10. J. Böhm, W. Decker, S. Laplagne, G. Pfister, Computing integral bases via localization and Hensel lifting (2015). http://arxiv.org/abs/1505.05054

  11. J. Böhm, W. Decker, C. Fieker, G. Pfister, The use of bad primes in rational reconstruction. Math. Comput. 84, 3013–3027 (2015)

    Article  MathSciNet  Google Scholar 

  12. J. Böhm, W. Decker, S. Laplagne, F. Seelisch, adjointideal.lib - a Singular 4-1-0 library for computing adjoint ideals of curves. Singular distribution. http://www.singular.uni-kl.de

  13. N. Brieskorn, Plane Algebraic Curves (Birkhäuser, Basel, 1986)

    Book  Google Scholar 

  14. A. Brill, M. Noether, Über die algebraischen Functionen und ihre Anwendung in der Geometrie. Math. Ann. 7, 269–310 (1874)

    Article  Google Scholar 

  15. R. Buchweitz, G.-M. Greuel, The Milnor number and deformations of complex curve singularities. Invent. Math. 58, 241–281 (1980)

    Article  MathSciNet  Google Scholar 

  16. G. Castelnuovo, Massima dimensione dei sistemi lineari di curve piane di dato genere. Ann. Mat. (2) 18, 119–128 (1890)

    Google Scholar 

  17. G. Castelnuovo, Sui multipli di una serie lineare di gruppi di punti appartenenti ad una curva algebrica. Rend. Circ. Mat. Palermo 7, 89–110 (1893)

    Article  Google Scholar 

  18. N. Chiarli, Deficiency of linear series on the normalization of a space curve. Commun. Algebra 12, 2231–2242 (1984)

    Article  MathSciNet  Google Scholar 

  19. C. Ciliberto, F. Orecchia, Adjoint ideals to projective curves are locally extended ideals. Bollettino U.M.I. (6) 3-B, 39–52 (1984)

    Google Scholar 

  20. W. Decker, G.-M. Greuel, G. Pfister, T. de Jong, The normalization: a new algorithm, implementation and comparisons, in Computational Methods for Representations of Groups and Algebras (Essen, 1997) (Birkhäuser, Basel, 1999)

    MATH  Google Scholar 

  21. W. Decker, G.-M. Greuel, G. Pfister, H. Schönemann, Singular 4-1-0 — a computer algebra system for polynomial computations. http://www.singular.uni-kl.de

  22. T. De Jong, An algorithm for computing the integral closure. J. Symb. Comput. 26, 273–277 (1998)

    Article  MathSciNet  Google Scholar 

  23. T. De Jong, G. Pfister, Local Analytic Geometry (Vieweg, Braunschweig, 2000)

    Book  Google Scholar 

  24. J. Dieudonne, Topics in Local Algebra. Notre Dame Mathematical Lectures (University of Notre Dame Press, Notre Dame, 1967)

    MATH  Google Scholar 

  25. D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry (Springer, Berlin, 1995)

    MATH  Google Scholar 

  26. M. El Kahoui, Z.Y. Moussa, An algorithm to compute the adjoint ideal of an affine plane curve. Math. Comput. Sci. 8, 289–298 (2014)

    Article  MathSciNet  Google Scholar 

  27. D. Gorenstein, An arithmetic theory of adjoint plane curves. Trans. Am. Math. Soc. 72, 414–436 (1952)

    Article  MathSciNet  Google Scholar 

  28. H. Grauert, R. Remmert, Analytische Stellenalgebren. Unter Mitarbeit von O. Riemenschneider, Die Grundlehren der mathematischen Wissenschaften, Band 176 (Springer, Berlin, 1971)

    Chapter  Google Scholar 

  29. S. Greco, P. Valabrega, On the theory of adjoints, in Algebraic Geometry. Lecture Notes in Mathematics, vol. 732 (Springer, Berlin, 1979), pp. 99–123

    Google Scholar 

  30. S. Greco, P. Valabrega, On the theory of adjoints II. Rendiconti del Circolo Matematico di Palermo, Serie II, Tomo XXXI, 5–15 (1982)

    Google Scholar 

  31. G.-M. Greuel, On Deformations of Curves and a Formula of Deligne. Algebraic Geometry (La Rábida 1981). Lecture Notes in Mathematics, vol. 961 (Springer, Berlin, 1982)

    Google Scholar 

  32. G.-M. Greuel, G. Pfister, A Singular Introduction to Commutative Algebra (Springer, Berlin, 2008)

    MATH  Google Scholar 

  33. G.-M. Greuel, C. Lossen, E. Shustin, Introduction to Singularities and Deformations (Springer, Berlin, 2007)

    MATH  Google Scholar 

  34. G.-M. Greuel, S. Laplagne, F. Seelisch, Normalization of rings. J. Symb. Comput. 45(9), 887–901 (2010)

    Article  MathSciNet  Google Scholar 

  35. G.-M. Greuel, S. Laplagne, G. Pfister, normal.lib – a Singular library for computing the normalization of affine rings. Singular distribution, http://www.singular.uni-kl.de

  36. W. Gröbner, Idealtheoretischer Aufbau der algebraischen Geometrie, Teil I (Teubner, Leipzig, 1941)

    MATH  Google Scholar 

  37. R. Hartshorne, Algebraic Geometry (Springer, Berlin, 1977)

    Book  Google Scholar 

  38. A. Hirano, Construction of plane curves with cusps. Saitama Math. J. 10, 21–24 (1992)

    MathSciNet  MATH  Google Scholar 

  39. H. Hironaka, On the arithmetic genera and the effective genera of algebraic curves. Mem. College Sci. Univ. Kyoto Ser. A Math. 30(2), 177–195 (1957)

    Article  MathSciNet  Google Scholar 

  40. N. Idrees, G. Pfister, S. Steidel, Parallelization of modular algorithms. J. Symb. Comput. 46, 672–684 (2011)

    Article  MathSciNet  Google Scholar 

  41. O. Keller, Die verschiedenen Definitionen des adjungierten Ideals einer ebenen algebraischen Kurve. Math. Ann. 159, 130–144 (1965)

    Article  MathSciNet  Google Scholar 

  42. O. Keller, Vorlesungen über algebraische Geometrie (Akademische Verlagsgesellschaft, Leipzig, 1974)

    MATH  Google Scholar 

  43. D. Le Brigand, J.J. Risler, Algorithme de Brill-Nother et codes de Goppa. Bulletin de la S. M. F. 116, 231–253 (1988)

    MATH  Google Scholar 

  44. J. Lipman, A numerical criterion for simultaneous normalization. Duke Math. J. 133(2), 347–390 (2006)

    Article  MathSciNet  Google Scholar 

  45. Q. Liu, Algebraic Geometry and Arithmetic Curves (Oxford University Press, Oxford, 2002)

    MATH  Google Scholar 

  46. Maple (Waterloo Maple Inc.), Maple (2012). http://www.maplesoft.com/

  47. E. Matlis, 1-Dimensional Cohen-Macaulay Rings. Lecture Notes in Mathematics, vol. 327 (Springer, Berlin, 1970)

    Google Scholar 

  48. J.S. Milne, Étale Cohomology (Princeton University Press, Princeton, NJ, 1980)

    MATH  Google Scholar 

  49. T. Milnor, Singular Points of Complex Hypersurfaces. Annals of Mathematics Studies, vol. 61 (Princeton University Press, Princeton, NJ, 1968)

    Google Scholar 

  50. M. Mnuk, An algebraic approach to computing adjoint curves. J. Symb. Comput. 23(2–3), 229–240 (1997)

    Article  MathSciNet  Google Scholar 

  51. F. Orecchia, I. Ramella, On the computation of the adjoint ideal of curves with ordinary singularities. Appl. Math. Sci. 8(136), 6805–6812 (2014)

    Google Scholar 

  52. K. Petri, Über Spezialkurven I. Math. Ann. 93, 182–209 (1924)

    Google Scholar 

  53. R. Riemann, Theorie der Abel’schen Functionen. J. Reine Angew. Math. 54(14), 115–155 (1857)

    Article  MathSciNet  Google Scholar 

  54. J.R. Sendra, F. Winkler, Parametrization of algebraic curves over optimal field extensions. Parametric algebraic curves and applications (Albuquerque, NM, 1995). J. Symb. Comput. 23(2–3), 191–207 (1997)

    Article  MathSciNet  Google Scholar 

  55. J.R. Sendra, F. Winkler, S. Perez-Diaz, Rational Algebraic Curves. Algorithms and Computation in Mathematics, vol. 22 (Springer, Berlin, 2008)

    Book  Google Scholar 

  56. I.R. Shafarevich, Algebraic Geometry I (Springer, Berlin, 1994)

    Google Scholar 

  57. I. Swanson, C. Huneke, Integral Closure of Ideals, Rings, and Modules (Cambridge University Press, Cambridge, 2006)

    MATH  Google Scholar 

  58. N. Tschebotareff (Chebotarev), Die Bestimmung der Dichtigkeit einer Menge von Primzahlen, welche zu einer gegebenen Substitutionsklasse gehören. Math. Ann. 95, 191–228 (1925)

    Google Scholar 

  59. B.L. van der Waerden, Einführung in die algebraische Geometrie. Die Grundlehren der Mathematischen Wissenschaften (Vieweg, Braunschweig, 1939)

    Google Scholar 

  60. M. van Hoeij, An algorithm for computing an integral basis in an algebraic function field. J. Symb. Comput. 18(4), 353–363 (1994)

    Article  MathSciNet  Google Scholar 

  61. O. Zariski, P. Samuel, Commutative Algebra I (Springer, Berlin, 1975)

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Gert-Martin Greuel, Christoph Lossen, Thomas Markwig, Mathias Schulze, and Frank Seelisch for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janko Böhm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Böhm, J., Decker, W., Laplagne, S., Pfister, G. (2017). Local to Global Algorithms for the Gorenstein Adjoint Ideal of a Curve. In: Böckle, G., Decker, W., Malle, G. (eds) Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-70566-8_3

Download citation

Publish with us

Policies and ethics