Skip to main content

Hygro- and Thermo-Mechanical Modeling of Wood at Large Deformations: Application to Densification and Forming of Wooden Structures

  • Chapter
  • First Online:
Advances in Mechanics of Materials and Structural Analysis

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 80))

Abstract

The contribution at hand provides a basis for modeling hygro- and thermo-mechanical processes, especially at large deformations. Therefore, hygro- and thermo-mechanical fundamentals of wood are introduced under consideration of moisture, temperature and displacement dependent processes. The influence of moisture on the density of wood is taken into account as well as a characterization of the interaction of temperature and moisture. Finite element formulations are derived,s together with constitutive laws, as a basis for the numerical solutions. A verification as well as a validation of the specific formulations for the hygro- and thermo-mechanical behavior of different wood species is presented. Finally, the applicability of the proposed finite element descriptions is demonstrated at the densification and forming process of wood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bazant, Z.P.: Constitutive equation of wood at variable humidity and temperature. Wood Sci. Technol. 19, 159–177 (1985)

    Article  Google Scholar 

  2. de Borst, K., Jenkel, C., Montero, C., Colmars, J., Gril, J., Kaliske, M., Eberhardsteiner, J.: Mechanical characterization of wood: An integrative approach ranging from nanoscale to structure. Comput. Struct. 127, 53–67 (2013)

    Article  Google Scholar 

  3. Carmeliet, J., Guyer, R., Derome, D.: Moisture and mechanical hysteretic behavior of wood: a two-scale approach. In: Proceedings of the Fourth European Conference on Computational Mechanics, Paris (2010)

    Google Scholar 

  4. Cave, I.: Modelling moisture-related mechanical properties of wood. Part I: Properties of the wood constituents. Wood Sci. Technol. 12, 75–86 (1978a)

    Article  Google Scholar 

  5. Cave, I.: Modelling moisture-related mechanical properties of wood. Part II: Computation of properties of a model of wood and comparison with experimental data. Wood Sci. Technol. 12, 127–139 (1978b)

    Article  Google Scholar 

  6. Coleman, B., Gurtin, M.E.: Thermodynamics with internal state variables. J. Chem. Phys. 47, 597–613 (1967)

    Article  Google Scholar 

  7. Coleman, B., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal. 13, 167–178 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  8. Easterling, K.E., Harryson, R., Gibson, L.J., Ashby, M.F.: On the mechanics of balsa and other woods. Proc. Royal Soc. Lond. A 383, 31–41 (1982)

    Article  Google Scholar 

  9. Eitelberger, J., Hofstetter, K.: Multiscale homogenization of wood transport properties: Diffusion coefficients for steady-state moisture transport. Wood Material Sci. Eng. 5, 97–103 (2010)

    Article  Google Scholar 

  10. Eitelberger, J., Hofstetter, K.: Prediction of transport properties of wood below the fiber saturation point - a multiscale homogenization approach and its experimental validation, Part II: Steady state moisture diffusion coefficient. Compos. Sci. Technol. 71, 145–151 (2011)

    Article  Google Scholar 

  11. Farruggia, F., Perré, P.: Microscopic tensile tests in the transverse plane of earlywood and latewood parts of spruce. Wood Sci. Technol. 34, 65–82 (2000)

    Article  Google Scholar 

  12. Fleischhauer, R.: A Boundary Value Driven Approach to Computational Homogenization. Dissertationsschrift, Technische Universität Dresden (2016)

    Google Scholar 

  13. Frandsen, H.L.: Modelling of Moisture Transport in Wood – State of the Art and Analytic Discussion. Report, Aalborg University (2005)

    Google Scholar 

  14. Frandsen, H.L., Svensson, S.: Implementation of sorption hysteresis in multi-fickian moisture transport. Holzforschung 61, 693–701 (2007)

    Article  Google Scholar 

  15. Frandsen, H.L., Damkilde, L., Svensson, S.: A revised multi-fickian moisture transport model to describe non-fickian effects in wood. Holzforschung 61, 563–572 (2007)

    Article  Google Scholar 

  16. Garab, J., Keunecke, D., Hering, S., Szalai, J., P N, : Measurement of standard and off-axis elastic moduli and poisson‘s ratios of spruce and yew wood in transverse plane. Wood Sci. Technol. 44, 451–464 (2010)

    Google Scholar 

  17. Gibson, L.J., Ashby, M.F.: Cellular Solids - Structure and Properties. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  18. Göktepe, S.: Micro-Macro Approaches to Rubbery and Glassy Polymers: Predictive Micromechanically-Based Models and Simulations. Dissertationsschrift, Universität Stuttgart (2007)

    Google Scholar 

  19. Goodman, J.R., Bodig, J.: Orthotropic elastic properties of wood. J. Struct. Div. Proc. Am. Soc. Civ. Eng. 96, 2301–2319 (1970)

    Google Scholar 

  20. Green, A., Naghdi, P.: Some remarks on elastic-plastic deformation at finite strain. Int. J. Eng. Sci. 9, 1219–1229 (1971)

    Article  MATH  Google Scholar 

  21. Haller, P.: Personal Correspondance. Technische Universität Dresden, Chair of Timber Engineering and Construction Design (2010)

    Google Scholar 

  22. Hammoum, F., Audebert, P.: Modeling and simulation of (visco)-plastic behavior of wood under moisture change. Mech. Res. Commun. 26, 203–208 (1999)

    Article  MATH  Google Scholar 

  23. Hanhijärvi, A., Mackenzie-Helnwein, P.: Computational analysis of quality reduction during drying of lumber due to irrecoverable deformation. I: Orthotropic viscoelastic-mechanosorptive-plastic material model for the transverse plane of wood. J. Eng. Mech. 129, 996–1005 (2003)

    Article  Google Scholar 

  24. Hassani, M.M., Wittel, F.K., Hering, S., Herrmann, H.J.: Rheological model for wood. Comput. Methods Appl. Mech. Eng. 283, 1032–1060 (2015)

    Article  Google Scholar 

  25. Hauksson, J., Bergqvist, G., Bergsten, U., Sjöström, M., Edlund, U.: Prediction of basic wood properties for norway spruce intergretation of near infrared sprectroscopy data using partial least squares regression. Wood Sci. Technol. 35, 475–485 (2001)

    Article  Google Scholar 

  26. Helnwein, P., Eberhardsteiner, J., Mang, H.: Modeling of biaxially stressed wood under plane stress conditions as an orthotropic multi-surface elasto-plastic material. In: Mang, H.A., Rammerstorfer, F., Eberhardsteiner, J. (eds.) Proceedings of the Fifth World Congress on Computational Mechanics, Wien (2002)

    Google Scholar 

  27. Hering, S., Keunecke, D., Niemz, P.: Moisture-dependent orthotropic elasticity of beech wood. Wood Sci. Technol. 46, 927–938 (2011)

    Article  Google Scholar 

  28. Hering, S., Saft, S., Resch, E., Niemz, P., Kaliske, M.: Characterisation of moisture-dependent plasticity of beech wood and its application to a multi-surface plasticity model. Holzforschung 66, 373–380 (2012)

    Article  Google Scholar 

  29. Hozjan, T., Svensson, S.: Theoretical analysis of moisture transport in wood as an open porous hygroscopic material. Holzforschung 65, 97–102 (2010)

    Google Scholar 

  30. Jenkel, C., Kaliske, M.: Finite element analysis of timber containing branches - an approach to model the grain course and the influence on the structural behaviour. Eng. Struct. 75, 237–247 (2014)

    Article  Google Scholar 

  31. Jenkel, C., Leichsenring, F., Graf, W., Kaliske, M.: Stochastic modelling of uncertainty in timber engineering. Eng. Struct. 99, 296–310 (2015)

    Article  Google Scholar 

  32. Kaliske, M.: A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains. Comput. Methods Appl. Mech. Eng. 185, 225–243 (2000)

    Article  MATH  Google Scholar 

  33. Kaliske, M., Jenkel, C., Saft, S., Resch, E.: Computational models for wooden structures. Comput. Technol. Rev. 2, 145–176 (2010)

    Article  Google Scholar 

  34. Keunecke, D., Hering, S., Niemz, P.: Three-dimensional elastic behaviour of common yew and norway spruce. Wood Sci. Technol. 42, 633–647 (2008)

    Article  Google Scholar 

  35. Lee, E.H.: Elastic-plastic deformation at finite strains. ASME J. Appl. Mech. 36, 1–6 (1969)

    Article  MATH  Google Scholar 

  36. Lubarda, V.A.: Constitutive theories based on the multiplicative decomposition of deformation gradient: Thermoelasticity, elastoplasticity, and biomechanics. Appl. Mech. Rev. 57, 95–108 (2004)

    Article  Google Scholar 

  37. Marsden, J., Hughes, T.: Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs (1983)

    MATH  Google Scholar 

  38. Miehe, C.: Zur Behandlung Thermomechanischer Prozesse. Dissertationsschrift, Universität Hannover (1988)

    Google Scholar 

  39. Miehe, C., Apel, N., Lambrecht, M.: Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials. Comput. Methods Appl. Mech. Eng. 191, 5383–5425 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Niemz, P.: Physik des Holzes und der Holzwerkstoffe. DRW-Verlag, Leinfelden-Echterdingen (1993)

    Google Scholar 

  41. Oudjene, M., Khelifa, M.: Elasto-plastic constitutive law for wood behaviour under compressive loadings. Constr. Building Mater. 23, 3359–3366 (2009a)

    Article  Google Scholar 

  42. Oudjene, M., Khelifa, M.: Finite element modelling of wooden structures at large deformations and brittle failure prediction. Mater. Design 30, 4081–4087 (2009b)

    Article  Google Scholar 

  43. Reichel, S., Kaliske, M.: Hygro-mechanically coupled modelling of creep in wooden structures, part i: Mechanics. Int. J. Solids Struct. 77, 28–44 (2015a)

    Article  Google Scholar 

  44. Reichel, S., Kaliske, M.: Hygro-mechanically coupled modelling of creep in wooden structures, part ii: Influence of moisture content. Int. J. Solids Struct. 77, 45–64 (2015b)

    Article  Google Scholar 

  45. Saft, S., Kaliske, M.: Numerical simulation of the ductile failure of mechanically and moisture loaded wooden structures. Comput. Struct. 89, 2460–2470 (2011)

    Article  Google Scholar 

  46. Saft, S., Kaliske, M.: A hybrid interface-element for the simulation of moisture-induced cracks in wood. Eng. Fract. Mech. 102, 32–50 (2013)

    Article  Google Scholar 

  47. Sandberg, D., Haller, P., Navi, P.: Thermo-hydro and thermo-hydro-mechanical wood processing: An opportunity for future environmentally friendly wood products. Wood Material Sci. Eng. 8, 64–88 (2013)

    Article  Google Scholar 

  48. Simo, J.: Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comput. Methods Appl. Mech. Eng. 99, 61–112 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  49. Simo, J.C.: Numerical analysis and simulation of plasticity. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. VI. Elsevier, Amsterdam (1998)

    Google Scholar 

  50. Simo, J.C., Ortiz, M.: A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations. Comput. Methods Appl. Mech. Eng. 49, 221–245 (1985)

    Article  MATH  Google Scholar 

  51. Simo, J.C., Kennedy, J.G., Govindjee, S.: Non-smooth multisurface plasticity and viscoplasticity. loading/unloading conditions and numerical algorithms. Int. J. Numer. Methods Eng. 26, 2161–2185 (1988)

    Article  MATH  Google Scholar 

  52. de Souza Neto, E.A., Perić, D., Owen, D.R.J.: Computational Methods for Plasticity - Theory and Applications. Wiley, Chichester (2008)

    Book  Google Scholar 

  53. Tabiei, A., Wu, J.: Three-dimensional nonlinear orthotropic finite element material model for wood. Compos. Struct. 50, 143–149 (2000)

    Article  Google Scholar 

  54. Truesdell, C., Noll, W.: The Nonlinear Field Theories of Mechanics. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  55. Zhu, Z., Kaliske, M.: Numerical simulation of coupled heat and mass transfer in wood dried at high temperature. Heat Mass Transf. 47, 351–358 (2010)

    Article  Google Scholar 

  56. Zhu, Z., Kaliske, M.: Modeling of coupled heat, moisture transfer and mechanical deformations of wood during drying process. Eng. Comput. 28, 802–827 (2011)

    Article  Google Scholar 

  57. Zienkiewicz, O., Taylor, R.: The Finite Element Method - Volume 1: The Basis, 5th edn. Butterworth-Heinemann, Oxford (2000)

    Google Scholar 

Download references

Acknowledgements

This research is financially supported by the Deutsche Forschungsgemeinschaft (DFG) under contract KA 1163/22, which is gratefully acknowledged by the authors. Furthermore, the authors would like to thank the Chair of Timber Engineering and Construction Design at Technische Universität Dresden for carrying out the experimental investigations of beech wood in Sects. 6 and 7.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kaliske .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fleischhauer, R., Kaliske, M. (2018). Hygro- and Thermo-Mechanical Modeling of Wood at Large Deformations: Application to Densification and Forming of Wooden Structures. In: Altenbach, H., Jablonski, F., Müller, W., Naumenko, K., Schneider, P. (eds) Advances in Mechanics of Materials and Structural Analysis. Advanced Structured Materials, vol 80. Springer, Cham. https://doi.org/10.1007/978-3-319-70563-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70563-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70562-0

  • Online ISBN: 978-3-319-70563-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics