Skip to main content

On Phase Transformation Induced Effects Controlling the Flow Behavior of Ferritic-Martensitic Dual-Phase Steels

  • Chapter
  • First Online:
Advances in Mechanics of Materials and Structural Analysis

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 80))

Abstract

In the present work, peculiarities of the macroscopic, initial flow behavior of ferritic-martensitic dual-phase steels and their causes are discussed. For this purpose, results of continuum-micromechanical finite-element simulations on model microstructures are presented. During production of dual-phase steels, a portion of their microstructure, i.e. austenite transforms to martensite and thereby expands. This causes ‘transformation induced’ residual stresses and plastic strains in their microstructure. These quantities are identified to govern the initial flow behavior of these steels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The martensite-start-temperature is assumed to be \(400\,^{\circ }\text {C}\).

  2. 2.

    Deviatoric transformation strains are neglected here. Since each martensite grain most probably consists of several martensite variants, deviatoric strain of the grain most likely averages out.

  3. 3.

    This parameter represents a volumetric expansion (transformation strain) of \(1.23\%\), corresponding to the value used by Liedl [9, 11]. Another value representing an expansion of \(3.05\%\) delivers results qualitatively similar to those given in the present contribution [7].

  4. 4.

    As given in Eq. (3), the employed ferrite yields at room temperature at \(228\,\text {MPa}\). The unprestrained results in Fig. 4 show the yield point at approximately \(215\, \text {MPa}\). This little mismatch is induced by a numerical artifact (coarse solver step-size).

  5. 5.

    Except for small fluctuations due to the slightly differing Young’s moduli chosen for ferrite and martensite.

  6. 6.

    Unless the macroscopic load reduces the local von Mises stress.

References

  1. Läpple, V.: Wärmebehandlung des Stahls. Verlag Europa-Lehrmittel, Haan-Gruiten (2006)

    Google Scholar 

  2. Rashid, M.S.: GM 980X-A unique high strength sheet steel with superior formability, SAE Technical Paper 760206. Society of Automotive Engineers Inc., Warrendale, PA (1976)

    Google Scholar 

  3. Fischmeister, H., Karlsson, B.: Plastizitätseigenschaften grob-zweiphasiger werkstoffe. Zeitschrift für Metallkunde 68, 311–327 (1977)

    Google Scholar 

  4. Davies, R.G.: Influence of martensite composition and content on the properties of dual phase steels. Metall. Trans. A 9A, 671–679 (1978)

    Article  Google Scholar 

  5. Davies, R.G.: The deformation behavior of a vanadium-strengthened dual phase steel. Metall. Trans. A 9A, 41–52 (1978)

    Article  Google Scholar 

  6. Fillafer, A., Krempaszky, C., Werner, E.: On strain partitioning and micro-damage behavior of dual-phase steels. Mater. Sci. Eng. A 614, 180–192 (2014)

    Article  Google Scholar 

  7. Fillafer, A.: Fließ- und Mikroschädigungsverhalten ferritisch martensitischer Dualphasenstähle, Ph.D thesis, Technische Universität München (2015)

    Google Scholar 

  8. Erdogan, M., Priestner, R.: Effect of epitaxial ferrite on yielding and plastic flow in dual phase steel in tension and compression. Mater. Sci. Technol. 15, 1273–1284 (1999)

    Google Scholar 

  9. Liedl, U.: Anfangsverformung- und Alterungsverhalten von Dual-Phasen Stahl, Ph.D thesis, Technische Universität München (2003)

    Google Scholar 

  10. Abaqus. Manuals, Version 6.10EF. Dassault Systèmes Simulia Corp. (2010)

    Google Scholar 

  11. Liedl, U., Traint, S., Werner, E.A.: An unexpected feature of the stress-strain diagram of dual-phase steel. Comput. Mater. Sci. 25, 122–128 (2002)

    Article  Google Scholar 

  12. Kim, N.J., Thomas, G.: Effects of morphology on the mechanical behavior of a dual phase fe/2si/0.1c steel. Metall. Trans. A 12A, 483–489 (1981)

    Article  Google Scholar 

  13. Daxner, T.: Finite element modelling of cellular materials. In: Altenbach, H., Öchsner, A. (eds.) Cellular and Porous Materials in Structures and Processes, pp. 47–106. Springer, Wien (2010)

    Google Scholar 

  14. Lee, H.C., Gurland, J.: Hardness and deformation of cemented tungsten carbide. Mater. Sci. Eng. 33, 125–133 (1978)

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their appreciation to B. Regener, T. Taxer and R. Wesenjak. Several code scripts they shared contributed to the results presented. Y. Granbom of SSAB and A. Pichler of voestalpine generously provided industrial steel samples for model input and validation.

The Research Fund for Coal and Steel supported part of this work through grant RFSR-CT-2008-00027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Fillafer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fillafer, A., Werner, E., Krempaszky, C. (2018). On Phase Transformation Induced Effects Controlling the Flow Behavior of Ferritic-Martensitic Dual-Phase Steels. In: Altenbach, H., Jablonski, F., Müller, W., Naumenko, K., Schneider, P. (eds) Advances in Mechanics of Materials and Structural Analysis. Advanced Structured Materials, vol 80. Springer, Cham. https://doi.org/10.1007/978-3-319-70563-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70563-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70562-0

  • Online ISBN: 978-3-319-70563-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics