Skip to main content

Analytical Modelling of the Tooth Translational Motions: Comparative Analysis for Different Shapes of Root

  • Chapter
  • First Online:
  • 1392 Accesses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 80))

Abstract

The orthodontic treatment planning may be carried out based on the finite element and analytical models of periodontal ligament (PDL). For analytical modelling of the PDL behavior the shape of the tooth root mainly was approximated by circular or elliptical paraboloid. Another shape of the tooth root is the elliptical two-sheeted hyperboloid. Semi-axes of the tooth root cross-section in the shape of the elliptical paraboloid and two-sheeted hyperboloid on the alveolar crest level are the same, but the shape of a two-sheeted hyperboloid allows employing the additional parameter for describing the root apex rounding. The aim of this study is the comparative analysis of the hydrostatic stresses patterns during the tooth root translational displacements in the almost incompressible PDL for the root in the shape of the elliptical paraboloid and two-sheeted hyperboloid. As a result, patterns of the hydrostatic stresses in the PDL during translational displacement are nearly identical for the tooth root in the shape of a paraboloid and the tooth root in the shape of a two-sheeted hyperboloid with the rounded apex of the tooth root. The translational movement of the tooth root with a pointed apex leads to the higher hydrostatic stresses in the PDL compared with the tooth root with a rounded apex. The obtained results indicated that the rounding of the tooth root should be considered during planning of orthodontic treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bosiakov, S., Mselati, A., Krupoderov, A.: Mathematical modelling of initial displacements of the tooth root in the hyperboloid of two sheets form. Russ. J. Biomech. 19(2), 161–176 (2015)

    Google Scholar 

  2. Bourauel, C., Vollmer, D., Jager, A.: Application of bone remodeling theories in the simulation of orthodontic tooth movements. J. Orofac. Orthop. 61(4), 266–279 (2000)

    Article  Google Scholar 

  3. Cattaneo, P., Dalstra, M., Melsen, B.: The finite element method: a tool to study orthodontic tooth movement. J. Dent. Res. 84(5), 428–433 (2005)

    Article  Google Scholar 

  4. Chang, Y., Shin, S., Baek, S.: Three-dimensional finite element analysis in distal en masse movement of the maxillary dentition with the multiloop edgewise archwire. Eur. J. Orthod. 26, 339–345 (2004)

    Article  Google Scholar 

  5. Clement, R., Schneider, J., Brambs, H., Wunderlich, A., Geiger, M., Sander, F.: Quasi-automatic 3D finite element model generation for individual single-rooted teeth and periodontal ligament. Comp. Meth. Prog. Biomed. 73(2), 135–144 (2004)

    Article  Google Scholar 

  6. De Pauw, G., Dermaut, L., De Bruyn, H.: The value of the centre of rotation in initial and longitudinal tooth and bone displacement. Eur. J. Orthod. 25, 285–291 (2003)

    Article  Google Scholar 

  7. Hayashia, K., Arakib, Y., Uechia, J., Ohnoc, H., Mizoguchi, I.: A novel method for the three-dimensional (3-d) analysis of orthodontic tooth movement calculation of rotation about and translation along the finite helical axis. J. Biomech. 2002, 45–51 (2002)

    Article  Google Scholar 

  8. Hohmann, A., Kober, C., Young, P., Dorow, C., Geiger, M., Boryor, A., Sander, F.M., Sander, C., Sander, F.: Influence of different modeling strategies for the periodontal ligament on finite element simulation results. Am. J. Orthod. Dentofac. Orthop. 139(6), 775–783 (2011)

    Article  Google Scholar 

  9. Jeon, P., Turley, P., Moon, H., Ting, K.: Analysis of stress in the periodontium of the maxillary first molar with a three-dimensional finite element model. Am. J. Orthod. Dentofac. Orthop. 115(3), 267–274 (1999)

    Article  Google Scholar 

  10. Kojima, Y., Fukui, H.: A numerical simulation of tooth movement by wire bending. Am. J. Orthod. Dentofac. Orthop. 130, 452–459 (2006)

    Article  Google Scholar 

  11. Kusy, R., Tulloch, C.: Analysis of moment/force ratios tooth movement. Am. J. Orthod. Dentofac. Orthop. 90, 127–131 (1986)

    Article  Google Scholar 

  12. Maceri, F., Marino, G., Vairo, G.: Mechanical behaviour of endodontic restorations with multiple prefabricated posts: a finite-element approach. J. Biomech. 40, 2386–2398 (2007)

    Article  Google Scholar 

  13. Middleton, J., Jones, M., Wilson, A.: The role of the periodontal ligament in bone modeling: the initial development of a time-dependent finite element model. Am. J. Orthod. Dentofac. Orthop. 109, 155–162 (1996)

    Article  Google Scholar 

  14. Mohandesan, H., Ravanmehr, H., Valaei, N.: A radiographic analysis of external apical root resorption of maxillary incisors during active orthodontic treatment. Eur. J. Orthod. 29(2), 134–139 (2007)

    Google Scholar 

  15. Natali, A.N., Pavan, P.G., Scarpa, C.: Numerical analysis of tooth mobility: formulation of a nonlinear constitutive law for the periodontal ligament. Dent. Mater. 20, 623–629 (2004)

    Article  Google Scholar 

  16. Nikolai, R.: Rigid-body kinematics and single-tooth displacements. Am. J. Orthod. Dentofac. Orthop. 110, 88–92 (1996)

    Article  Google Scholar 

  17. Provatidis, C.G.: A comparative fem-study of tooth mobility using isotropic and anisotropic models of the periodontal ligament. finite element method. Med. Eng. Phys. 22, 359–370 (2000)

    Article  Google Scholar 

  18. Provatidis, C.G.: An analytical model for stress analysis of a tooth in translation. Int. J. Eng. Sci. 39(12), 1361–1381 (2001)

    Article  Google Scholar 

  19. Qian, H., Chen, J., Katona, T.R.: The influence of pdl principal fibers in a 3-dimensional analysis of orthodontic tooth movement. Am. J. Orthod. Dentofac. Orthop. 120, 272–279 (2001)

    Article  Google Scholar 

  20. Qian, Y., Fan, Y., Liu, Z., Zhang, M.: Numerical simulation of tooth movement in a therapy period. Clin. Biomech. 23, S48–S52 (2008)

    Article  Google Scholar 

  21. Rees, J., Jacobsen, P.: Elastic modulus of the periodontal ligament. Biomaterials 18, 995–999 (1997)

    Article  Google Scholar 

  22. Smith, R.J., Burstone, C.J.: Mechanics of tooth movement. Am. J. Orthod. 85(4), 294–307 (1984)

    Article  Google Scholar 

  23. Tanne, K., Nagataki, T., Inoue, Y., Sakuda, M., Burstone, C.J.: Patterns of initial tooth displacement associated with various root lengths and alveolar bone heights. Am. J. Orthod. Dentofac. Orthop. 100, 66–71 (1991)

    Article  Google Scholar 

  24. Toms, S.R., Eberhardt, A.W.: A nonlinear finite element analysis of the periodontal ligament under orthodontic tooth loading. Am. J. Orthod. Dentofac. Orthop. 123, 657–665 (2003)

    Article  Google Scholar 

  25. Van Schepdael, A., Geris, L., Vander Sloten, J.: Analytical determination of stress patterns in the periodontal ligament during orthodontic tooth movement. Med. Eng. Phys. 35, 403–410 (2013)

    Google Scholar 

  26. Van Schepdael, A., Vander Sloten, J., Geris, L.: Mechanobiological modeling can explain orthodontic tooth movement: Three case studies. J. Biomech. 46, 470–477 (2013)

    Google Scholar 

  27. Vollmer, D., Bourauel, C., Maier, K., Jager, A.: Determination of the center of resistance in an upper human canine and idealized tooth model. Eur. J. Orthod. 21(6), 633–648 (1999)

    Article  Google Scholar 

  28. Yashiro, K., Montero, E.D.C., Takada, K.: Simulation of initial tooth displacement by inverse kinematic modeling: Prediction of anchorage-loss for orthodontic tooth movement. Int. Cong. Ser. 1284, 49–54 (2005)

    Article  Google Scholar 

  29. Ziegler, A., Keilig, L., Kawarizadeh, A., Jager, A., Bourauel, C.: Numerical simulation of the biomechanical behaviour of multi-rooted teeth. Eur. J. Orthod. 27(4), 333–339 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of FP7 IRSES Marie Curie grant No 610547 TAMER and DAAD grant No A/12/87820.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holm Altenbach .

Editor information

Editors and Affiliations

Appendix

Appendix

$$\begin{aligned} \begin{aligned} a_{11}^{(k)} = -A \iint \limits _{F_k} (\sin (\alpha _k) (G_k (2 \nu -1) n_z^{(k)} + 2 H_k (\nu -1) n_x^{(k)})+\cos (\alpha _k) n_y^{(k)} (1-2 \nu )) dF_k, \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} a_{16}^{(k)} = a_{61}^{(k)} = A \iint \limits _{F_k} (\sin (\alpha _k ) (G_k^3 (2 \nu -1) n_z^{(k)} y + H_k (2 G_k^2 (\nu -1) n_x^{(k)} y+ n_y^{(k)} x (1-2 \nu ))+ \\ \nonumber + G_k H_k^2 (2 \nu -1) n_z^{(k)} y+2 H_k^3 (\nu -1) n_x^{(k)} y) +\cos (\alpha _k) (n_y^{(k)} y-2 \nu (n_x^{(k)} x+n_y^{(k)} y))) dF_k, \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} a_{22}^{(k)} = A \iint \limits _{F_k} (2 (\nu -1) n_y^{(k)} \cos (\alpha _k) -(2 \nu -1) \sin (\alpha _k) (G_k n_z^{(k)} +H_k n_x^{(k)})) dF_k, \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} a_{34}^{(k)} = a_{43}^{(k)} = - A \iint \limits _{F_k} (\cos (\alpha _k) (G_k^2 (1-2 \nu ) n_y^{(k)} y+ \\ + H_k^2 (1-2 \nu ) n_y^{(k)} y-2 \nu n_z^{(k)} z)+\sin (\alpha _k) (2 G_k^3 (\nu -1) n_z^{(k)} y + \\ +G_k^2 H_k (2 \nu -1) n_x^{(k)} y+G_k (2 H_k^2 (\nu -1) n_z^{(k)} y +(1-2 \nu ) n_y^{(k)} z)+H_k^3 (2 \nu -1) n_x^{(k)} y)) dF_k, \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} a_{44}^{(k)} = A \iint \limits _{F_k} (\cos (\alpha _k) (G_k^2 (2 \nu -1) y (n_y^{(k)} y-n_z^{(k)} z)+ \\ \nonumber +H_k^2 (2 \nu -1) y (n_y^{(k)} y-n_z^{(k)} z)+2 z (\nu n_y^{(k)} z+\nu n_z^{(k)} y-n_y^{(k)} z))+ \\ +\sin (\alpha _k) (-2 G_k^3 y (\nu n_y^{(k)} z+(\nu -1) n_z^{(k)} y)+G_k^2 H_k (1-2 \nu ) n_x^{(k)} y^2+\\+G_k ((2 \nu -1) z (n_y^{(k)} y-n_z^{(k)} z)-2 H_k^2 y (\nu n_y^{(k)} z+(\nu -1) n_z^{(k)} y))-\\ -H_k (2 \nu -1) n_x^{(k)} (H_k^2 y^2+z^2))) dF_k, \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} a_{55}^{(k)} = - A \iint \limits _{F_k} (\sin (\alpha _k) (G_k (n_z^{(k)} (2 (\nu -1) x^2+\\ \nonumber +(2 \nu -1) z^2)+n_x^{(k)} x z)+H_k (n_x^{(k)} ((2 \nu -1) x^2+ \\ +2 (\nu -1) z^2)+n_z^{(k)} x z))-(2 \nu -1) n_y^{(k)} \cos (\alpha _k) (x^2+z^2)) dF_k, \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} a_{66}^{(k)} = A \iint \limits _{F_k} (\cos (\alpha _k) (n_x^{(k)} x y +n_y^{(k)} (2 (\nu -1) x^2+(2 \nu -1) y^2))+\\ \nonumber +\sin (\alpha _k) (H_k (n_x^{(k)} ((1-2 \nu ) x^2-2 G_k^2 (\nu -1) y^2)+\\+n_y^{(k)} x y (-2 (G_k^2-1) \nu -1))-G_k (2 \nu -1) n_z^{(k)} (G_k^2 y^2+x^2)+\\+G_k H_k^2 (1-2 \nu ) n_z^{(k)} y^2-2 H_k^3 y (\nu n_x^{(k)} y+\nu n_y^{(k)} x-n_x^{(k)} y))) dF_k, \end{aligned} \end{aligned}$$
$$\begin{aligned} A=\frac{E}{2\delta (1+\nu )(1-2\nu )}, G_k=\frac{\partial F_k}{\partial x}, H_k=\frac{\partial F_k}{\partial z}, k=1, 2. \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yurkevich, K., Bosiakov, S., Altenbach, H. (2018). Analytical Modelling of the Tooth Translational Motions: Comparative Analysis for Different Shapes of Root. In: Altenbach, H., Jablonski, F., Müller, W., Naumenko, K., Schneider, P. (eds) Advances in Mechanics of Materials and Structural Analysis. Advanced Structured Materials, vol 80. Springer, Cham. https://doi.org/10.1007/978-3-319-70563-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70563-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70562-0

  • Online ISBN: 978-3-319-70563-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics