Skip to main content

Flexible Beam-Like Structures - Experimental Investigation and Modeling of Cables

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 80))

Abstract

This chapter deals with the deformation behavior of flexible slender structures such as cables or hoses. In addition to their main functions, conducting electric current or other media, their mechanical properties gain importance, since the number of applications where cables are loaded mechanically increases. The first section of this chapter deals with the basic experimental characterization of the deformation behavior of cables and similar beam-like structures. Experiments on different specimens illustrate the possible variants in constitutive deformation behavior, covering rate independent elastic and inelastic behavior. The second part of this contribution treats the modeling of beam-like structures by means of the Cosserat rod theory. It allows for the simplification of the three-dimensional continuum mechanical framework due to the slender geometry of the observed specimens. The governing equations are then formulated in the sectional quantities of the geometrically exact beam. The focus in this part lies on the constitutive modeling of the phenomena observed in the first part, with a special emphasis on the constitutive bending behavior of cables.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Antman, S.S.: Nonlinear Problems of Elasticity. Springer, Berlin (2005)

    MATH  Google Scholar 

  2. Balke, H.: Einführung in die Technische Mechanik. Springer, Berlin (2008)

    MATH  Google Scholar 

  3. Beer, F.P., Johnston, E.R.: Mechanics of Materials. McGraw-Hill, London (1992)

    Google Scholar 

  4. Costello, G.A., Phillips, J.W.: Effective modulus of twisted wire cables. J. Eng. Mech. Div. 102(1), 171–181 (1976)

    Google Scholar 

  5. Costello, G.A., Sinha, S.K.: Torsional stiffness of twisted wire cables. J. Eng. Mech. Div. 103(4), 766–770 (1977)

    Google Scholar 

  6. Dörlich, V., Diebels, S., Linn, J.: Investigation of elastoplastic effects of cables under large spatial deformation. Proc. Appl. Math. Mech. 15, 185–186 (2015)

    Article  Google Scholar 

  7. Dörlich, V., Linn, J., Scheffer, T., Diebels, S.: Towards viscoplastic constitutive models for cosserat rods. Arch. Mech. Eng. 63, 215–230 (2016)

    Article  Google Scholar 

  8. Dörlich, V., Češarek, P., Linn, J., Diebels, S.: Experimental investigation and numerical modeling of resultant-based bending plasticity in cables. In: Proceedings of 8th ECCOMAS Thematic Conference on Multibody Dynamics, Prague (2017)

    Google Scholar 

  9. Gurtin, M.E.: An Introduction to Continuum Mechanics. Academic Press, New York (1981)

    MATH  Google Scholar 

  10. Han, S., Bauchau, O.A.: Nonlinear, three-dimensional beam theory for dynamic analysis. In: Multibody System Dynamics, pp. 1–28 (2016)

    Google Scholar 

  11. Haupt, P.: Continuum Mechanics and Theory of Materials. Springer Science & Business Media (2013)

    Google Scholar 

  12. Hoeft, F., Stephan, T., Hermanns, O.: Eine neue Methode zur vergleichenden örtlichen Beanspruchungsanalyse für Kabel und Schläuche. SIMVEC Berechnung und Simulation im Fahrzeugbau, VDIBerichte 2107, 297–309 (2010)

    Google Scholar 

  13. Knapp, R.H.: Derivation of a new stiffness matrix for helically armoured cables considering tension and torsion. Int. J. Numer. Meth. Eng. 14(4), 515–529 (1979)

    Article  MATH  Google Scholar 

  14. Lemaitre, J., Chaboche, J.L.: Mechanics of Solid Materials. Cambridge university press, Cambridge (1994)

    MATH  Google Scholar 

  15. Linn, J., Lang, H., Tuganov, A.: Geometrically exact Cosserat rods with Kelvin–Voigt type viscous damping. Mech. Sci. 4(1), 79–96 (2013)

    Article  Google Scholar 

  16. Luenberger, D.C.: Linear and Nonlinear Programming. Addison-Wesley Publishing Company, Reading (1984)

    Google Scholar 

  17. Mata, P., Oller, S., Barbat, A.H.: Static analysis of beam structures under nonlinear geometric and constitutive behavior. Comput. Methods Appl. Mech. Eng. 196(45), 4458–4478 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Reissner, E.: On one-dimensional large-displacement finite-strain beam theory. Stud. Appl. Math. 52, 87–95 (1973)

    Article  MATH  Google Scholar 

  19. Schneider, F., Linn, J., Hermansson, T., Andersson, F.: Cable dynamics and fatigue analysis for digital mock-up in vehicle industry. In: Proceedings of 8th ECCOMAS Thematic Conference on Multibody Dynamics, Prague (2017)

    Google Scholar 

  20. Simo, J.C.: A finite strain beam formulation: the three dimensional dynamic problem - Part I. Comput. Meth. Appl. Mech. Eng. 49(1), 55–70 (1985)

    Article  MATH  Google Scholar 

  21. Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, New York (1998)

    MATH  Google Scholar 

  22. Timoshenko, S.P., Gere, J.M.: Mechanics of Materials. Van Nostrand Reinhold Company, New York (1972)

    Google Scholar 

  23. Truesdell, C., Noll, W.: In: Antman, S.S. (ed.) The Non–linear Field Theories of Mechanics, 3rd edn. Springer, Berlin (2004)

    Google Scholar 

  24. Vaz, M.A., Aguiar, L.A.D., Estefen, S.F., Brack, M.: Experimental determination of axial, torsional and bending stiffness of umbilical cables. In: Proceedings of 17th International Conference on Offshore Mechanics and Arctic Engineering (1998)

    Google Scholar 

  25. Witz, J.A., Tan, Z.: Rotary bending of marine cables and umbilicals. Eng. Struct. 17(4), 267–275 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Dörlich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dörlich, V., Linn, J., Diebels, S. (2018). Flexible Beam-Like Structures - Experimental Investigation and Modeling of Cables. In: Altenbach, H., Jablonski, F., Müller, W., Naumenko, K., Schneider, P. (eds) Advances in Mechanics of Materials and Structural Analysis. Advanced Structured Materials, vol 80. Springer, Cham. https://doi.org/10.1007/978-3-319-70563-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70563-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70562-0

  • Online ISBN: 978-3-319-70563-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics