Skip to main content

Accelerators and Experimental Apparatuses

  • Chapter
  • First Online:
Selected Exercises in Particle and Nuclear Physics

Part of the book series: UNITEXT for Physics ((UNITEXTPH))

  • 1828 Accesses

Abstract

The subject of the third chapter is the motion of charged particles induced by electromagnetic fields. The first section focuses on the kinematics of charged particles inside static fields and its application for particle tracking . The second section is dedicated to the physics of accelerators. The last section is devoted to the concept of luminosity and event rates at colliders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.L. Glusckstern, Nucl. Instr. Meth. 24, 381 (1963). https://doi.org/10.1016/0029-554X(63)90347-1

  2. R. Frühwirth et al., Data Analysis Techniques for High-Energy Physics, 2nd edn. (Cambridge Press, Cambridge, 2000)

    MATH  Google Scholar 

  3. C. Patrignani et al., Particle data group. Chin. Phys. C 40, 100001 (2016)

    Article  ADS  Google Scholar 

  4. A. Fasano, S. Marmi, Meccanica Analitica, 2nd edn. (Bollati Boringhieri, 2002)

    Google Scholar 

  5. L. Rolandi, F. Ragusa, New J. Phys. 9, 336 (2007). https://doi.org/10.1088/1367-2630/9/9/336

  6. ATLAS Collaboration, Phys. Lett. B 716, 1 (2012). https://doi.org/10.1016/j.physletb.2012.08.020

  7. C.M.S. Collaboration, Phys. Lett. B 716, 30 (2012). https://doi.org/10.1016/j.physletb.2012.08.021

  8. ATLAS and CMS Collaborations, Phys. Rev. Lett. 114, 191803 (2015). https://doi.org/10.1103/PhysRevLett.114.191803

  9. http://cerncourier.com/cws/article/cern/28229

  10. D.H. Perkins, Introduction to Hig Energy Physics, 4th edn. (Cambridge University press, Cambridge, 2000)

    Book  Google Scholar 

  11. R. Hellborg (ed.), Electrostatic Accelerators (Springer, Berlin, 2005)

    Google Scholar 

  12. W. Blum, W. Riegler, L. Rolandi, Particle Detection with Drift Chambers (Springer, Berlin, 2008)

    Google Scholar 

  13. C.M.S. Collaboration, JINST 5, T03021 (2010). https://doi.org/10.1088/1748-0221/5/03/T03021

  14. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999)

    MATH  Google Scholar 

  15. w3.lnf.infn.it/accelerators/dafne/?lang=en

    Google Scholar 

  16. A. Blondel, Phys. World 4(1), 22 (1991). https://doi.org/10.1088/2058-7058/4/1/20

  17. E. Wilson, An Introduction to Particle Acceleretors (Oxford University Press, Oxford, 2001)

    Book  Google Scholar 

  18. White Paper of ICFA-ICUIL Joint Task Force, High Power Laser Technology for Accelerators, published in ICFA Beam Dynamics Newslettern, vol. 56 (2011). http://www-bd.fnal.gov/icfabd/

  19. F. Hinterberger, CAS - CERN Accelerator School and KVI: Specialised CAS Course on Small Accelerators, Zeegse, The Netherlands, 24 May–2 Jun 2005, pp. 95-112 (CERN-2006-012). https://doi.org/10.5170/CERN-2006-012.95

  20. W. Herr, B. Muratori, CAS - CERN Accelerator School: Intermediate Course on Accelerator Physics, Zeuthen, Germany, 15–26 Sep 2003, pp. 361–378 (CERN-2006-002). https://doi.org/10.5170/CERN-2006-002.361

  21. T. Suzuki, KEK-76-3 (1976)

    Google Scholar 

  22. H.G. Hereward, CERN/MPS/DL 69-12 (1969)

    Google Scholar 

  23. S. van der Meer, ISR-PO/68-31 (1968)

    Google Scholar 

  24. LHC Design Report, CERN-2004-003 (2004)

    Google Scholar 

  25. G. Apollinari et al. CERN-2015-005 (2015)

    Google Scholar 

  26. W.R. Leo, Techniques for Nuclear and Particle Physics Experiments, 2nd edn. (Springer, Berlin, 1993)

    Google Scholar 

  27. G.F. Knoll, Radiation Detection and Measurement, 4th edn. (Wiley, New York, 2010)

    Google Scholar 

  28. E. Bravin et al. CERN SL-97-72 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Bianchini .

Appendices

Appendix 1

The computer program below implements a Monte Carlo simulation of the experimental apparatus considered in Problem 3.10. The measured points \((y_0,y_1,y_2)\) are sampled from a Gaussian pdf centred around the true values \(y_i=x_i^2/2R\) and with standard deviation equal to the detector resolution. The signed sagitta is computed from

$$\begin{aligned} s = \frac{y_2 + y_0}{2} - y_1, \end{aligned}$$
(3.201)

and a sign flip corresponds to the outcome \(s<0\).

figure an

Appendix 2

The computer program below computes numerically the integral:

$$\begin{aligned} \sigma ^2_{\langle {p_\mathrm{T} \varDelta \phi }\rangle } \approx \left( \frac{N(\alpha -1)}{p_\mathrm{T}^\mathrm{L \; (1-\alpha )} - p_\mathrm{T}^\mathrm{H \; (1-\alpha )} } \int _{p_\mathrm{T}^\mathrm{L}}^{p_\mathrm{T}^\mathrm{H}} dp_\mathrm{T} \, \frac{p_\mathrm{T}^{-\alpha } }{c_2 + c_1 p_\mathrm{T}^2} \right) ^{-1} \end{aligned}$$
(3.202)

from Problem 3.12.

figure ao

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bianchini, L. (2018). Accelerators and Experimental Apparatuses. In: Selected Exercises in Particle and Nuclear Physics. UNITEXT for Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-70494-4_3

Download citation

Publish with us

Policies and ethics