Part of the The Receptors book series (REC, volume 32)


The observations that hallucinogenic drugs are in fact serotonin 5-HT2A receptor agonists and atypical antipsychotic drugs antagonize 5-HT2A receptors in addition to dopamine D2-like receptors, led to envisage a close relationship between schizophrenia and serotonin transmission. Post mortem studies have shown diminished 5-HT2A receptor binding in brain tissue from people with schizophrenia. If these changes also occur in schizophrenia, the decreased 5-HT2A binding might be a compensatory effect resulting from increased cortical serotonergic transmission. Therefore, schizophrenic personality was associated to an excess of brain serotonin. Overall, such data suggests that 5-HT systems may play a role in the etiology and therapy of some aspects of schizophrenia. Nevertheless, there is no simple hypothesis of schizophrenia involving a single transmitter dysfunction in the brain. Thus, although initial views suggest increased serotonergic and dopaminergic transmission over 5-HT2A and D2 receptors in schizophrenia, current hypotheses for both etiology and treatment of the disease also implicate 5-HT1A and D2 receptor partial agonism in the development of novel antipsychotics with a better therapeutic profile and fewer adverse effects. In this chapter we review the role that serotonin and 5-HT2A receptors play in schizophrenia as well as the most relevant schizophrenia-related behavioral effects induced by hallucinogen drugs in rodents, focusing on those that involve a 5-HT2A receptor mechanism.


Serotonin 5-HT2A receptors Schizophrenia Atypical antipsychotic Prefrontal cortex 


  1. 1.
    Lieberman JA, Mailman RB, Duncan G, Sikich L, Chakos M, Nichols DE et al (1998) Serotonergic basis of antipsychotic drug effects in schizophrenia. Biol Psychiatry 44(11):1099–1117CrossRefPubMedGoogle Scholar
  2. 2.
    Wolley DW (1962) The biochemical bases of psychosis or the serotonin hypothesis of mental disease. Wiley, New YorkGoogle Scholar
  3. 3.
    Lerer B, Ran A, Blacker M, Silver H, Weller MP, Drummer D et al (1988) Neuroendocrine responses in chronic schizophrenia. Evidence for a serotonergic dysfunction. Schizophr Res 1(6):405–410CrossRefPubMedGoogle Scholar
  4. 4.
    Maes M, Meltzer HY (1996) Effects of meta-chlorophenylpiperazine on neuroendocrine and behavioral responses in male schizophrenic patients and normal volunteers. Psychiatry Res 64(3):147–159CrossRefPubMedGoogle Scholar
  5. 5.
    Roth BL, Meltzer HY (1995) The role of serotonin in schizophrenia. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology, the 4th generation of progress. Raven Press, New York, pp 1215–1227Google Scholar
  6. 6.
    Carlsson A, Lindqvist M (1963) Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol 20:140–144CrossRefGoogle Scholar
  7. 7.
    Seeman P, Lee T (1975) Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science 188(4194):1217–1219CrossRefPubMedGoogle Scholar
  8. 8.
    Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192(4238):481–483CrossRefPubMedGoogle Scholar
  9. 9.
    Kane J, Honigfeld G, Singer J, Meltzer H (1988) Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch Gen Psychiatry 45(9):789–796CrossRefPubMedGoogle Scholar
  10. 10.
    Meltzer HY (1989) Clinical studies on the mechanism of action of clozapine: the dopamine-serotonin hypothesis of schizophrenia. Psychopharmacology 99(Suppl):S18–S27CrossRefPubMedGoogle Scholar
  11. 11.
    Hollister LE (1962) Drug-induced psychoses and schizophrenic reactions: a critical comparison. Ann N Y Acad Sci 96:80–92CrossRefPubMedGoogle Scholar
  12. 12.
    Willins DL, Deutch AY, Roth BL (1997) Serotonin 5-HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex. Synapse 27(1):79–82CrossRefPubMedGoogle Scholar
  13. 13.
    Jakab RL, Goldman-Rakic PS (1998) 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci U S A 95(2):735–740CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Santana N, Bortolozzi A, Serrats J, Mengod G, Artigas F (2004) Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 14(10):1100–1109CrossRefPubMedGoogle Scholar
  15. 15.
    Gurevich EV, Joyce JN (1997) Alterations in the cortical serotonergic system in schizophrenia: a postmortem study. Biol Psychiatry 42(7):529–545CrossRefPubMedGoogle Scholar
  16. 16.
    Dean B (2003) The cortical serotonin2A receptor and the pathology of schizophrenia: a likely accomplice. J Neurochem 85(1):1–13CrossRefPubMedGoogle Scholar
  17. 17.
    Selvaraj S, Arnone D, Cappai A, Howes O (2014) Alterations in the serotonin system in schizophrenia: a systematic review and meta-analysis of postmortem and molecular imaging studies. Neurosci Biobehav Rev 45:233–245CrossRefPubMedGoogle Scholar
  18. 18.
    Ngan ET, Yatham LN, Ruth TJ, Liddle PF (2000) Decreased serotonin 2A receptor densities in neuroleptic-naive patients with schizophrenia: A PET study using [18F]setoperone. Am J Psychiatry 157(6):1016–1018CrossRefPubMedGoogle Scholar
  19. 19.
    Rasmussen H, Erritzoe D, Andersen R, Ebdrup BH, Aggernaes B, Oranje B et al (2010) Decreased frontal serotonin2A receptor binding in antipsychotic-naive patients with first-episode schizophrenia. Arch Gen Psychiatry 67(1):9–16CrossRefPubMedGoogle Scholar
  20. 20.
    Dean B Serotonin2A Receptors and Schizophrenia: The Controversies Continue. Comment in Schizophrenia Research Forum [Posted 18 January 2010]. Available from:
  21. 21.
    Adams BW, Moghaddam B (2001) Effect of clozapine, haloperidol, or M100907 on phencyclidine-activated glutamate efflux in the prefrontal cortex. Biol Psychiatry 50(10):750–757CrossRefPubMedGoogle Scholar
  22. 22.
    Amargós-Bosch M, López-Gil X, Artigas F, Adell A (2006) Clozapine and olanzapine, but not haloperidol, suppress serotonin efflux in the medial prefrontal cortex elicited by phencyclidine and ketamine. Int J Neuropsychopharmacol 9:565–573CrossRefPubMedGoogle Scholar
  23. 23.
    López-Gil X, Babot Z, Amargós-Bosch M, Suñol C, Artigas F, Adell A (2007) Clozapine and haloperidol differently suppress the MK-801-increased glutamatergic and serotonergic transmission in the medial prefrontal cortex of the rat. Neuropsychopharmacology 32(10):2087–2097CrossRefPubMedGoogle Scholar
  24. 24.
    López-Gil X, Artigas F, Adell A (2010) Unraveling monoamine receptors involved in the action of typical and atypical antipsychotics on glutamatergic and serotonergic transmission in prefrontal cortex. Curr Pharm Des 16(5):502–515CrossRefPubMedGoogle Scholar
  25. 25.
    Reynolds GP (2004) Receptor mechanisms in the treatment of schizophrenia. J Psychopharmacol 18(3):340–345CrossRefPubMedGoogle Scholar
  26. 26.
    De Paulis T (2001) M-100907 (Aventis). Curr Opin Investig Drugs 2(1):123–132PubMedGoogle Scholar
  27. 27.
    Offord SJ, Wong DF, Nyberg S (1999) The role of positron emission tomography in the drug development of M100907, a putative antipsychotic with a novel mechanism of action. J Clin Pharmacol 39:17S–24SCrossRefGoogle Scholar
  28. 28.
    Owens MJ, Risch SC (2001) Atypical antipsychotics. In: Schatzberg AF, Nemeroff CB (eds) Essentials of clinical psychopharmacology. American Psychiatric Publishing, Inc, Washington DC, pp 125–154Google Scholar
  29. 29.
    Gouzoulis-Mayfrank E, Schneider F, Friedrich J, Spitzer M, Thelen B, Sass H (1998) Methodological issues of human experimental research with hallucinogens. Pharmacopsychiatry 31(Suppl 2):114–118CrossRefPubMedGoogle Scholar
  30. 30.
    Vollenweider FX, Vollenweider-Scherpenhuyzen MF, Bäbler A, Vogel H, Hell D (1998) Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport 9(17):3897–3902CrossRefPubMedGoogle Scholar
  31. 31.
    Amann LC, Gandal MJ, Halene TB, Ehrlichman RS, White SL, McCarren HS, Siegel SJ (2010) Mouse behavioral endophenotypes for schizophrenia. Brain Res Bull 83(3–4):147–161CrossRefPubMedGoogle Scholar
  32. 32.
    Kaffman A, Krystal JH (2012) New frontiers in animal research of psychiatric illness. Methods Mol Biol 829:3–30CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Robbins TW (2012) Animal models of neuropsychiatry revisited: a personal tribute to Teitelbaum. Behav Brain Res 231(2):337–342CrossRefPubMedGoogle Scholar
  34. 34.
    Schmid CL, Raehal KM, Bohn LM (2008) Agonist-directed signaling of the serotonin 2A receptor depends on β-arrestin-2 interactions in vivo. Proc Natl Acad Sci U S A 105(3):1079–1084CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Abbas A, Roth BL (2008) Arresting serotonin. Proc Natl Acad Sci U S A 105(3):831–832CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Nichols DE (2016) Psychedelics. Pharmacol Rev 68(2):264–355CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Bolino F, Manna V, Di Cicco L, Di Michele V, Daneluzzo E, Rossi A, Casacchia M (1992) Startle reflex habituation in functional psychoses: a controlled study. Neurosci Lett 145(2):126–128CrossRefPubMedGoogle Scholar
  38. 38.
    Parwani A, Duncan EJ, Bartlett E, Madonick SH, Efferen TR, Rajan R, Sanfilipo M, Chappell PB, Chakravorty S, Gonzenbach S, Ko GN, Rotrosen JP (2000) Impaired prepulse inhibition of acoustic startle in schizophrenia. Biol Psychiatry 47(7):662–669CrossRefPubMedGoogle Scholar
  39. 39.
    Taiminen T, Jääskeläinen S, Ilonen T, Meyer H, Karlsson H, Lauerma H, Leinonen KM, Wallenius E, Kaljonen A, Salokangas RK (2000) Habituation of the blink reflex in first-episode schizophrenia, psychotic depression and non-psychotic depression. Schizophr Res 44(1):69–79CrossRefPubMedGoogle Scholar
  40. 40.
    Ludewig K, Geyer MA, Vollenweider FX (2003) Deficits in prepulse inhibition and habituation in never-medicated, first-episode schizophrenia. Biol Psychiatry 54(2):121–128CrossRefPubMedGoogle Scholar
  41. 41.
    Meincke U, Light GA, Geyer MA, Braff DL, Gouzoulis-Mayfrank E (2004) Sensitization and habituation of the acoustic startle reflex in patients with schizophrenia. Psychiatry Res 126(1):51–61CrossRefPubMedGoogle Scholar
  42. 42.
    Davis M (1987) Mescaline: excitatory effects on acoustic startle are blocked by serotonin2 antagonists. Psychopharmacology 93(3):286–291CrossRefPubMedGoogle Scholar
  43. 43.
    Hoffman HS, Ison JR (1980) Reflex modification in the domain of startle: I. Some empirical findings and their implications for how the nervous system processes sensory input. Psychol Rev 87(2):175–189CrossRefPubMedGoogle Scholar
  44. 44.
    Geyer MA, Ellenbroek B (2003) Animal behavior models of the mechanisms underlying antipsychotic atypicality. Prog Neuro-Psychopharmacol Biol Psychiatry 27(7):1071–1079CrossRefGoogle Scholar
  45. 45.
    Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L (1978) Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 15(4):339–343CrossRefPubMedGoogle Scholar
  46. 46.
    Braff DL, Geyer MA (1990) Sensorimotor gating and schizophrenia. Human and animal model studies. Arch Gen Psychiatry 47(2):181–188CrossRefPubMedGoogle Scholar
  47. 47.
    Bolino F, Di Michele V, Di Cicco L, Manna V, Daneluzzo E, Casacchia M (1994) Sensorimotor gating and habituation evoked by electro-cutaneous stimulation in schizophrenia. Biol Psychiatry 36(10):670–679CrossRefPubMedGoogle Scholar
  48. 48.
    Braff DL, Geyer MA, Light GA, Sprock J, Perry W, Cadenhead KS, Swerdlow NR (2001) Impact of prepulse characteristics on the detection of sensorimotor gating deficits in schizophrenia. Schizophr Res 49(1–2):171–178CrossRefPubMedGoogle Scholar
  49. 49.
    Quednow BB, Wagner M, Westheide J, Beckmann K, Bliesener N, Maier W, Kühn KU (2006) Sensorimotor gating and habituation of the startle response in schizophrenic patients randomly treated with amisulpride or olanzapine. Biol Psychiatry 59(6):536–545CrossRefPubMedGoogle Scholar
  50. 50.
    Sipes TE, Geyer MA (1997) DOI disrupts prepulse inhibition of startle in rats via 5-HT2A receptors in the ventral pallidum. Brain Res 761(1):97–104CrossRefPubMedGoogle Scholar
  51. 51.
    Pálenícek T, Balíková M, Bubeníková-Valesová V, Horácek J (2008) Mescaline effects on rat behavior and its time profile in serum and brain tissue after a single subcutaneous dose. Psychopharmacology 196(1):51–62CrossRefPubMedGoogle Scholar
  52. 52.
    Halberstadt AL, Geyer MA (2010) LSD but not lisuride disrupts prepulse inhibition in rats by activating the 5-HT(2A) receptor. Psychopharmacology 208(2):179–189CrossRefPubMedGoogle Scholar
  53. 53.
    Padich RA, McCloskey TC, Kehne JH (1996) 5-HT modulation of auditory and visual sensorimotor gating: II. Effects of the 5-HT2A antagonist MDL 100,907 on disruption of sound and light prepulse inhibition produced by 5-HT agonists in Wistar rats. Psychopharmacology 124(1–2):107–116CrossRefPubMedGoogle Scholar
  54. 54.
    Kohnomi S, Suemaru K, Kawasaki H, Araki H (2008) Effect of aripiprazole on 5-HT2 receptor-mediated wet-dog shake responses and disruption of prepulse inhibition in rats. J Pharmacol Sci 106(4):645–650CrossRefPubMedGoogle Scholar
  55. 55.
    Halberstadt AL, Geyer MA (2013) Serotonergic hallucinogens as translational models relevant to schizophrenia. Int J Neuropsychopharmacol 16(10):2165–2180CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Keller DL, Umbreit WW (1956) Permanent alteration of behavior in mice by chemical and psychological means. Science 124(3225):723–724CrossRefPubMedGoogle Scholar
  57. 57.
    Canal CE, Morgan D (2012) Head-twitch response in rodents induced by the hallucinogen 2,5-dimethoxy-4-iodoamphetamine: a comprehensive history, a re-evaluation of mechanisms, and its utility as a model. Drug Test Anal 4(7–8):556–576CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Arnt J, Hyttel J (1989) Facilitation of 8-OHDPAT-induced forepaw treading of rats by the 5-HT2 agonist DOI. Eur J Pharmacol 161(1):45–51CrossRefPubMedGoogle Scholar
  59. 59.
    Darmani NA, Martin BR, Pandey U, Glennon RA (1990) Pharmacological characterization of ear-scratch response in mice as a behavioral model for selective 5-HT2-receptor agonists and evidence for 5-HT1B- and 5-HT2-receptor interactions. Pharmacol Biochem Behav 37(1):95–99CrossRefPubMedGoogle Scholar
  60. 60.
    Dave KD, Harvey JA, Aloyo VJ (2002) A novel behavioral model that discriminates between 5-HT2A and 5-HT2C receptor activation. Pharmacol Biochem Behav 72(1–2):371–378CrossRefPubMedGoogle Scholar
  61. 61.
    Darmani NA, Mock OB, Towns LC, Gerdes CF (1994) The head-twitch response in the least shrew (Cryptotis parva) is a 5-HT2- and not a 5-HT1C-mediated phenomenon. Pharmacol Biochem Behav 48(2):383–396CrossRefPubMedGoogle Scholar
  62. 62.
    Hoch PH, Cattell JP, Pennes HH (1952) Effects of mescaline and lysergic acid (d-LSD-25). Am J Psychiatry 108(8):579–584CrossRefPubMedGoogle Scholar
  63. 63.
    Kenna JC, Sedman G (1964) The subjective experience of timing during lysergic acid diethylamide (LSD-25) intoxication. Psychopharmacologia 5:280–288CrossRefPubMedGoogle Scholar
  64. 64.
    Stubbs DA (1980) Temporal discrimination and a free-operant psychophysical procedure. J Exp Anal Behav 33(2):167–185CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Body S, Kheramin S, Ho MY, Miranda F, Bradshaw CM, Szabadi E (2003) Effects of a 5-HT2 receptor agonist, DOI (2,5-dimethoxy-4-iodoamphetamine), and antagonist, ketanserin, on the performance of rats on a free-operant timing schedule. Behav Pharmacol 14(8):599–607CrossRefPubMedGoogle Scholar
  66. 66.
    Body S, Cheung TH, Bezzina G, Asgari K, Fone KC, Glennon JC, Bradshaw CM, Szabadi E (2006) Effects of d-amphetamine and DOI (2,5-dimethoxy-4-iodoamphetamine) on timing behavior: interaction between D1 and 5-HT2A receptors. Psychopharmacology 189(3):331–343CrossRefPubMedGoogle Scholar
  67. 67.
    Hampson CL, Body S, den Boon FS, Cheung TH, Bezzina G, Langley RW, Fone KC, Bradshaw CM, Szabadi E (2010) Comparison of the effects of 2,5-dimethoxy-4-iodoamphetamine and D-amphetamine on the ability of rats to discriminate the durations and intensities of light stimuli. Behav Pharmacol 21(1):11–20CrossRefPubMedGoogle Scholar
  68. 68.
    Halberstadt AL, Powell SB, Geyer MA (2013) Role of the 5-HT2A receptor in the locomotor hyperactivity produced by phenylalkylamine hallucinogens in mice. Neuropharmacology 70:218–227CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Halberstadt AL, van der Heijden I, Ruderman MA, Risbrough VB, Gingrich JA, Geyer MA, Powell SB (2009) 5-HT(2A) and 5-HT(2C) receptors exert opposing effects on locomotor activity in mice. Neuropsychopharmacology 34(8):1958–1967CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Moreno JL, González-Maeso J (2013) Preclinical models of antipsychotic drug action. Int J Neuropsychopharmacol 16(10):2131–2144CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Robbins TW (2005) Synthesizing schizophrenia: a bottom-up, symptomatic approach. Schizophr Bull 31(4):854–864CrossRefPubMedGoogle Scholar
  72. 72.
    Hadamitzky M, Feja M, Becker T, Koch M (2009) Effects of acute systemic administration of serotonin2A/C receptor ligands in a delay-based decision-making task in rats. Behav Pharmacol 20(5–6):415–423CrossRefPubMedGoogle Scholar
  73. 73.
    Ruotsalainen S, MacDonald E, Koivisto E, Stefanski R, Haapalinna A, Riekkinen P Jr, Sirviö J (1998) 5-HT1A receptor agonist (8-OH-DPAT) and 5-HT2 receptor agonist (DOI) disrupt the non-cognitive performance of rats in a working memory task. J Psychopharmacol 12(2):177–185CrossRefPubMedGoogle Scholar
  74. 74.
    Rambousek L, Palenicek T, Vales K, Stuchlik A (2014) The effect of psilocin on memory acquisition, retrieval, and consolidation in the rat. Front Behav Neurosci 8:180CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Baou M, Boumba VA, Petrikis P, Rallis G, Vougiouklakis T, Mavreas V (2016) A review of genetic alterations in the serotonin pathway and their correlation with psychotic diseases and response to atypical antipsychotics. Schizophr Res 170(1):18–29. CrossRefPubMedGoogle Scholar
  76. 76.
    Aghajanian GK, Marek GJ (1999) Serotonin and hallucinogens. Neuropsychopharmacology 21(2 Suppl):16S–23SCrossRefPubMedGoogle Scholar
  77. 77.
    Meltzer HY, Matsubara S, Lee JC (1989) Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J Pharmacol Exp Ther 251(1):238–246PubMedGoogle Scholar
  78. 78.
    Arnt J, Skarsfeldt T (1998) Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacology 18(2):63–101CrossRefPubMedGoogle Scholar
  79. 79.
    Miyamoto S, LaMantia AS, Duncan GE, Sullivan P, Gilmore JH, Lieberman JA (2003) Recent advances in the neurobiology of schizophrenia. Mol Interv 3(1):27–39CrossRefPubMedGoogle Scholar
  80. 80.
    Farah A (2005) Atypicality of atypical antipsychotics. Prim Care Companion J Clin Psychiatry 7(6):268–274CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Remington G, Kapur S (2000) Atypical antipsychotics: are some more atypical than others? Psychopharmacology 148(1):3–15CrossRefPubMedGoogle Scholar
  82. 82.
    Clarke WP, Chavera TA, Silva M, Sullivan LC, Berg KA (2013) Signalling profile differences: paliperidone versus risperidone. Br J Pharmacol 170(3):532–545CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Oyamada Y, Horiguchi M, Rajagopal L, Miyauchi M, Meltzer HY (2015) Combined serotonin (5-HT)1A agonism, 5-HT2A and dopamine D2 receptor antagonism reproduces atypical antipsychotic drug effects on phencyclidine-impaired novel object recognition in rats. Behav Brain Res 285:165–175CrossRefPubMedGoogle Scholar
  84. 84.
    Sullivan LC, Clarke WP, Berg KA (2015) Atypical antipsychotics and inverse agonism at 5-HT2 receptors. Curr Pharm Des 21(26):3732–3738CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    McCreary AC, Newman-Tancredi A (2015) Serotonin 5-HT1A receptors and antipsychotics—an update in light of new concepts and drugs. Curr Pharm Des 21(26):3725–3731CrossRefPubMedGoogle Scholar
  86. 86.
    Bymaster FP, Calligaro DO, Falcone JF, Marsh RD, Moore NA, Tye NC, Seeman P, Wong DT (1996) Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology 14:87–96CrossRefPubMedGoogle Scholar
  87. 87.
    Daniel DG, Zimbroff DL, Potkin SG, Reeves KR, Harrigan EP, Lakshminarayanan M (1999) Ziprasidone 80 mg/day and 160 mg/day in the acute exacerbation of schizophrenia and schizoaffective disorder: a 6-week placebo-controlled trial. Ziprasidone Study Group. Neuropsychopharmacology 20:491–505CrossRefPubMedGoogle Scholar
  88. 88.
    Seeger TF, Seymour PA, Schmidt AW, Zorn SH, Schulz DW, Lebel LA, Heym J (1995) Ziprasidone (CP-88,059): a new antipsychotic with combined dopamine and serotonin receptor antagonist activity. J Pharmacol Exp Ther 275:101–113PubMedGoogle Scholar
  89. 89.
    Hill SK, Bishop JR, Palumbo D, Sweeney JA (2010) Effect of second-generation antipsychotics on cognition: current issues and future challenges. Expert Rev Neurother 10(1):43–57CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Wiesel FA, Nordström AL, Farde L, Eriksson B (1994) An open clinical and biochemical study of ritanserin in acute patients with schizophrenia. Psychopharmacology 114(1):31–38CrossRefPubMedGoogle Scholar
  91. 91.
    Marek G, Merchant K (2005) Developing therapeutics for schizophrenia and other psychotic disorders. NeuroRx 2(4):579–589CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.CSIC-Institut d’Investigacions Biomèdiques de Barcelona-CIBERSAM-IDIBAPSBarcelonaSpain
  2. 2.Institute of Biomedicine and Biotechnology of Cantabria, IBBTEC (CSIC-University of Cantabria)SantanderSpain

Personalised recommendations