Skip to main content

Schizophrenia

  • Chapter
  • First Online:
5-HT2A Receptors in the Central Nervous System

Part of the book series: The Receptors ((REC,volume 32))

  • 1208 Accesses

Abstract

The observations that hallucinogenic drugs are in fact serotonin 5-HT2A receptor agonists and atypical antipsychotic drugs antagonize 5-HT2A receptors in addition to dopamine D2-like receptors, led to envisage a close relationship between schizophrenia and serotonin transmission. Post mortem studies have shown diminished 5-HT2A receptor binding in brain tissue from people with schizophrenia. If these changes also occur in schizophrenia, the decreased 5-HT2A binding might be a compensatory effect resulting from increased cortical serotonergic transmission. Therefore, schizophrenic personality was associated to an excess of brain serotonin. Overall, such data suggests that 5-HT systems may play a role in the etiology and therapy of some aspects of schizophrenia. Nevertheless, there is no simple hypothesis of schizophrenia involving a single transmitter dysfunction in the brain. Thus, although initial views suggest increased serotonergic and dopaminergic transmission over 5-HT2A and D2 receptors in schizophrenia, current hypotheses for both etiology and treatment of the disease also implicate 5-HT1A and D2 receptor partial agonism in the development of novel antipsychotics with a better therapeutic profile and fewer adverse effects. In this chapter we review the role that serotonin and 5-HT2A receptors play in schizophrenia as well as the most relevant schizophrenia-related behavioral effects induced by hallucinogen drugs in rodents, focusing on those that involve a 5-HT2A receptor mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lieberman JA, Mailman RB, Duncan G, Sikich L, Chakos M, Nichols DE et al (1998) Serotonergic basis of antipsychotic drug effects in schizophrenia. Biol Psychiatry 44(11):1099–1117

    Article  CAS  PubMed  Google Scholar 

  2. Wolley DW (1962) The biochemical bases of psychosis or the serotonin hypothesis of mental disease. Wiley, New York

    Google Scholar 

  3. Lerer B, Ran A, Blacker M, Silver H, Weller MP, Drummer D et al (1988) Neuroendocrine responses in chronic schizophrenia. Evidence for a serotonergic dysfunction. Schizophr Res 1(6):405–410

    Article  CAS  PubMed  Google Scholar 

  4. Maes M, Meltzer HY (1996) Effects of meta-chlorophenylpiperazine on neuroendocrine and behavioral responses in male schizophrenic patients and normal volunteers. Psychiatry Res 64(3):147–159

    Article  CAS  PubMed  Google Scholar 

  5. Roth BL, Meltzer HY (1995) The role of serotonin in schizophrenia. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology, the 4th generation of progress. Raven Press, New York, pp 1215–1227

    Google Scholar 

  6. Carlsson A, Lindqvist M (1963) Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol 20:140–144

    Article  CAS  Google Scholar 

  7. Seeman P, Lee T (1975) Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science 188(4194):1217–1219

    Article  CAS  PubMed  Google Scholar 

  8. Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192(4238):481–483

    Article  CAS  PubMed  Google Scholar 

  9. Kane J, Honigfeld G, Singer J, Meltzer H (1988) Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch Gen Psychiatry 45(9):789–796

    Article  CAS  PubMed  Google Scholar 

  10. Meltzer HY (1989) Clinical studies on the mechanism of action of clozapine: the dopamine-serotonin hypothesis of schizophrenia. Psychopharmacology 99(Suppl):S18–S27

    Article  PubMed  Google Scholar 

  11. Hollister LE (1962) Drug-induced psychoses and schizophrenic reactions: a critical comparison. Ann N Y Acad Sci 96:80–92

    Article  CAS  PubMed  Google Scholar 

  12. Willins DL, Deutch AY, Roth BL (1997) Serotonin 5-HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex. Synapse 27(1):79–82

    Article  CAS  PubMed  Google Scholar 

  13. Jakab RL, Goldman-Rakic PS (1998) 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci U S A 95(2):735–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Santana N, Bortolozzi A, Serrats J, Mengod G, Artigas F (2004) Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 14(10):1100–1109

    Article  PubMed  Google Scholar 

  15. Gurevich EV, Joyce JN (1997) Alterations in the cortical serotonergic system in schizophrenia: a postmortem study. Biol Psychiatry 42(7):529–545

    Article  CAS  PubMed  Google Scholar 

  16. Dean B (2003) The cortical serotonin2A receptor and the pathology of schizophrenia: a likely accomplice. J Neurochem 85(1):1–13

    Article  CAS  PubMed  Google Scholar 

  17. Selvaraj S, Arnone D, Cappai A, Howes O (2014) Alterations in the serotonin system in schizophrenia: a systematic review and meta-analysis of postmortem and molecular imaging studies. Neurosci Biobehav Rev 45:233–245

    Article  CAS  PubMed  Google Scholar 

  18. Ngan ET, Yatham LN, Ruth TJ, Liddle PF (2000) Decreased serotonin 2A receptor densities in neuroleptic-naive patients with schizophrenia: A PET study using [18F]setoperone. Am J Psychiatry 157(6):1016–1018

    Article  CAS  PubMed  Google Scholar 

  19. Rasmussen H, Erritzoe D, Andersen R, Ebdrup BH, Aggernaes B, Oranje B et al (2010) Decreased frontal serotonin2A receptor binding in antipsychotic-naive patients with first-episode schizophrenia. Arch Gen Psychiatry 67(1):9–16

    Article  PubMed  Google Scholar 

  20. Dean B Serotonin2A Receptors and Schizophrenia: The Controversies Continue. Comment in Schizophrenia Research Forum [Posted 18 January 2010]. Available from: http://www.schizophreniaforum.org

  21. Adams BW, Moghaddam B (2001) Effect of clozapine, haloperidol, or M100907 on phencyclidine-activated glutamate efflux in the prefrontal cortex. Biol Psychiatry 50(10):750–757

    Article  CAS  PubMed  Google Scholar 

  22. Amargós-Bosch M, López-Gil X, Artigas F, Adell A (2006) Clozapine and olanzapine, but not haloperidol, suppress serotonin efflux in the medial prefrontal cortex elicited by phencyclidine and ketamine. Int J Neuropsychopharmacol 9:565–573

    Article  PubMed  Google Scholar 

  23. López-Gil X, Babot Z, Amargós-Bosch M, Suñol C, Artigas F, Adell A (2007) Clozapine and haloperidol differently suppress the MK-801-increased glutamatergic and serotonergic transmission in the medial prefrontal cortex of the rat. Neuropsychopharmacology 32(10):2087–2097

    Article  PubMed  Google Scholar 

  24. López-Gil X, Artigas F, Adell A (2010) Unraveling monoamine receptors involved in the action of typical and atypical antipsychotics on glutamatergic and serotonergic transmission in prefrontal cortex. Curr Pharm Des 16(5):502–515

    Article  PubMed  Google Scholar 

  25. Reynolds GP (2004) Receptor mechanisms in the treatment of schizophrenia. J Psychopharmacol 18(3):340–345

    Article  CAS  PubMed  Google Scholar 

  26. De Paulis T (2001) M-100907 (Aventis). Curr Opin Investig Drugs 2(1):123–132

    PubMed  Google Scholar 

  27. Offord SJ, Wong DF, Nyberg S (1999) The role of positron emission tomography in the drug development of M100907, a putative antipsychotic with a novel mechanism of action. J Clin Pharmacol 39:17S–24S

    Article  Google Scholar 

  28. Owens MJ, Risch SC (2001) Atypical antipsychotics. In: Schatzberg AF, Nemeroff CB (eds) Essentials of clinical psychopharmacology. American Psychiatric Publishing, Inc, Washington DC, pp 125–154

    Google Scholar 

  29. Gouzoulis-Mayfrank E, Schneider F, Friedrich J, Spitzer M, Thelen B, Sass H (1998) Methodological issues of human experimental research with hallucinogens. Pharmacopsychiatry 31(Suppl 2):114–118

    Article  CAS  PubMed  Google Scholar 

  30. Vollenweider FX, Vollenweider-Scherpenhuyzen MF, Bäbler A, Vogel H, Hell D (1998) Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport 9(17):3897–3902

    Article  CAS  PubMed  Google Scholar 

  31. Amann LC, Gandal MJ, Halene TB, Ehrlichman RS, White SL, McCarren HS, Siegel SJ (2010) Mouse behavioral endophenotypes for schizophrenia. Brain Res Bull 83(3–4):147–161

    Article  PubMed  Google Scholar 

  32. Kaffman A, Krystal JH (2012) New frontiers in animal research of psychiatric illness. Methods Mol Biol 829:3–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Robbins TW (2012) Animal models of neuropsychiatry revisited: a personal tribute to Teitelbaum. Behav Brain Res 231(2):337–342

    Article  CAS  PubMed  Google Scholar 

  34. Schmid CL, Raehal KM, Bohn LM (2008) Agonist-directed signaling of the serotonin 2A receptor depends on β-arrestin-2 interactions in vivo. Proc Natl Acad Sci U S A 105(3):1079–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Abbas A, Roth BL (2008) Arresting serotonin. Proc Natl Acad Sci U S A 105(3):831–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nichols DE (2016) Psychedelics. Pharmacol Rev 68(2):264–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bolino F, Manna V, Di Cicco L, Di Michele V, Daneluzzo E, Rossi A, Casacchia M (1992) Startle reflex habituation in functional psychoses: a controlled study. Neurosci Lett 145(2):126–128

    Article  CAS  PubMed  Google Scholar 

  38. Parwani A, Duncan EJ, Bartlett E, Madonick SH, Efferen TR, Rajan R, Sanfilipo M, Chappell PB, Chakravorty S, Gonzenbach S, Ko GN, Rotrosen JP (2000) Impaired prepulse inhibition of acoustic startle in schizophrenia. Biol Psychiatry 47(7):662–669

    Article  CAS  PubMed  Google Scholar 

  39. Taiminen T, Jääskeläinen S, Ilonen T, Meyer H, Karlsson H, Lauerma H, Leinonen KM, Wallenius E, Kaljonen A, Salokangas RK (2000) Habituation of the blink reflex in first-episode schizophrenia, psychotic depression and non-psychotic depression. Schizophr Res 44(1):69–79

    Article  CAS  PubMed  Google Scholar 

  40. Ludewig K, Geyer MA, Vollenweider FX (2003) Deficits in prepulse inhibition and habituation in never-medicated, first-episode schizophrenia. Biol Psychiatry 54(2):121–128

    Article  PubMed  Google Scholar 

  41. Meincke U, Light GA, Geyer MA, Braff DL, Gouzoulis-Mayfrank E (2004) Sensitization and habituation of the acoustic startle reflex in patients with schizophrenia. Psychiatry Res 126(1):51–61

    Article  PubMed  Google Scholar 

  42. Davis M (1987) Mescaline: excitatory effects on acoustic startle are blocked by serotonin2 antagonists. Psychopharmacology 93(3):286–291

    Article  CAS  PubMed  Google Scholar 

  43. Hoffman HS, Ison JR (1980) Reflex modification in the domain of startle: I. Some empirical findings and their implications for how the nervous system processes sensory input. Psychol Rev 87(2):175–189

    Article  CAS  PubMed  Google Scholar 

  44. Geyer MA, Ellenbroek B (2003) Animal behavior models of the mechanisms underlying antipsychotic atypicality. Prog Neuro-Psychopharmacol Biol Psychiatry 27(7):1071–1079

    Article  CAS  Google Scholar 

  45. Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L (1978) Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 15(4):339–343

    Article  CAS  PubMed  Google Scholar 

  46. Braff DL, Geyer MA (1990) Sensorimotor gating and schizophrenia. Human and animal model studies. Arch Gen Psychiatry 47(2):181–188

    Article  CAS  PubMed  Google Scholar 

  47. Bolino F, Di Michele V, Di Cicco L, Manna V, Daneluzzo E, Casacchia M (1994) Sensorimotor gating and habituation evoked by electro-cutaneous stimulation in schizophrenia. Biol Psychiatry 36(10):670–679

    Article  CAS  PubMed  Google Scholar 

  48. Braff DL, Geyer MA, Light GA, Sprock J, Perry W, Cadenhead KS, Swerdlow NR (2001) Impact of prepulse characteristics on the detection of sensorimotor gating deficits in schizophrenia. Schizophr Res 49(1–2):171–178

    Article  CAS  PubMed  Google Scholar 

  49. Quednow BB, Wagner M, Westheide J, Beckmann K, Bliesener N, Maier W, Kühn KU (2006) Sensorimotor gating and habituation of the startle response in schizophrenic patients randomly treated with amisulpride or olanzapine. Biol Psychiatry 59(6):536–545

    Article  CAS  PubMed  Google Scholar 

  50. Sipes TE, Geyer MA (1997) DOI disrupts prepulse inhibition of startle in rats via 5-HT2A receptors in the ventral pallidum. Brain Res 761(1):97–104

    Article  CAS  PubMed  Google Scholar 

  51. Pálenícek T, Balíková M, Bubeníková-Valesová V, Horácek J (2008) Mescaline effects on rat behavior and its time profile in serum and brain tissue after a single subcutaneous dose. Psychopharmacology 196(1):51–62

    Article  PubMed  Google Scholar 

  52. Halberstadt AL, Geyer MA (2010) LSD but not lisuride disrupts prepulse inhibition in rats by activating the 5-HT(2A) receptor. Psychopharmacology 208(2):179–189

    Article  CAS  PubMed  Google Scholar 

  53. Padich RA, McCloskey TC, Kehne JH (1996) 5-HT modulation of auditory and visual sensorimotor gating: II. Effects of the 5-HT2A antagonist MDL 100,907 on disruption of sound and light prepulse inhibition produced by 5-HT agonists in Wistar rats. Psychopharmacology 124(1–2):107–116

    Article  CAS  PubMed  Google Scholar 

  54. Kohnomi S, Suemaru K, Kawasaki H, Araki H (2008) Effect of aripiprazole on 5-HT2 receptor-mediated wet-dog shake responses and disruption of prepulse inhibition in rats. J Pharmacol Sci 106(4):645–650

    Article  CAS  PubMed  Google Scholar 

  55. Halberstadt AL, Geyer MA (2013) Serotonergic hallucinogens as translational models relevant to schizophrenia. Int J Neuropsychopharmacol 16(10):2165–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Keller DL, Umbreit WW (1956) Permanent alteration of behavior in mice by chemical and psychological means. Science 124(3225):723–724

    Article  CAS  PubMed  Google Scholar 

  57. Canal CE, Morgan D (2012) Head-twitch response in rodents induced by the hallucinogen 2,5-dimethoxy-4-iodoamphetamine: a comprehensive history, a re-evaluation of mechanisms, and its utility as a model. Drug Test Anal 4(7–8):556–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Arnt J, Hyttel J (1989) Facilitation of 8-OHDPAT-induced forepaw treading of rats by the 5-HT2 agonist DOI. Eur J Pharmacol 161(1):45–51

    Article  CAS  PubMed  Google Scholar 

  59. Darmani NA, Martin BR, Pandey U, Glennon RA (1990) Pharmacological characterization of ear-scratch response in mice as a behavioral model for selective 5-HT2-receptor agonists and evidence for 5-HT1B- and 5-HT2-receptor interactions. Pharmacol Biochem Behav 37(1):95–99

    Article  CAS  PubMed  Google Scholar 

  60. Dave KD, Harvey JA, Aloyo VJ (2002) A novel behavioral model that discriminates between 5-HT2A and 5-HT2C receptor activation. Pharmacol Biochem Behav 72(1–2):371–378

    Article  CAS  PubMed  Google Scholar 

  61. Darmani NA, Mock OB, Towns LC, Gerdes CF (1994) The head-twitch response in the least shrew (Cryptotis parva) is a 5-HT2- and not a 5-HT1C-mediated phenomenon. Pharmacol Biochem Behav 48(2):383–396

    Article  CAS  PubMed  Google Scholar 

  62. Hoch PH, Cattell JP, Pennes HH (1952) Effects of mescaline and lysergic acid (d-LSD-25). Am J Psychiatry 108(8):579–584

    Article  CAS  PubMed  Google Scholar 

  63. Kenna JC, Sedman G (1964) The subjective experience of timing during lysergic acid diethylamide (LSD-25) intoxication. Psychopharmacologia 5:280–288

    Article  CAS  PubMed  Google Scholar 

  64. Stubbs DA (1980) Temporal discrimination and a free-operant psychophysical procedure. J Exp Anal Behav 33(2):167–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Body S, Kheramin S, Ho MY, Miranda F, Bradshaw CM, Szabadi E (2003) Effects of a 5-HT2 receptor agonist, DOI (2,5-dimethoxy-4-iodoamphetamine), and antagonist, ketanserin, on the performance of rats on a free-operant timing schedule. Behav Pharmacol 14(8):599–607

    Article  CAS  PubMed  Google Scholar 

  66. Body S, Cheung TH, Bezzina G, Asgari K, Fone KC, Glennon JC, Bradshaw CM, Szabadi E (2006) Effects of d-amphetamine and DOI (2,5-dimethoxy-4-iodoamphetamine) on timing behavior: interaction between D1 and 5-HT2A receptors. Psychopharmacology 189(3):331–343

    Article  CAS  PubMed  Google Scholar 

  67. Hampson CL, Body S, den Boon FS, Cheung TH, Bezzina G, Langley RW, Fone KC, Bradshaw CM, Szabadi E (2010) Comparison of the effects of 2,5-dimethoxy-4-iodoamphetamine and D-amphetamine on the ability of rats to discriminate the durations and intensities of light stimuli. Behav Pharmacol 21(1):11–20

    Article  CAS  PubMed  Google Scholar 

  68. Halberstadt AL, Powell SB, Geyer MA (2013) Role of the 5-HT2A receptor in the locomotor hyperactivity produced by phenylalkylamine hallucinogens in mice. Neuropharmacology 70:218–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Halberstadt AL, van der Heijden I, Ruderman MA, Risbrough VB, Gingrich JA, Geyer MA, Powell SB (2009) 5-HT(2A) and 5-HT(2C) receptors exert opposing effects on locomotor activity in mice. Neuropsychopharmacology 34(8):1958–1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Moreno JL, González-Maeso J (2013) Preclinical models of antipsychotic drug action. Int J Neuropsychopharmacol 16(10):2131–2144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Robbins TW (2005) Synthesizing schizophrenia: a bottom-up, symptomatic approach. Schizophr Bull 31(4):854–864

    Article  PubMed  Google Scholar 

  72. Hadamitzky M, Feja M, Becker T, Koch M (2009) Effects of acute systemic administration of serotonin2A/C receptor ligands in a delay-based decision-making task in rats. Behav Pharmacol 20(5–6):415–423

    Article  CAS  PubMed  Google Scholar 

  73. Ruotsalainen S, MacDonald E, Koivisto E, Stefanski R, Haapalinna A, Riekkinen P Jr, Sirviö J (1998) 5-HT1A receptor agonist (8-OH-DPAT) and 5-HT2 receptor agonist (DOI) disrupt the non-cognitive performance of rats in a working memory task. J Psychopharmacol 12(2):177–185

    Article  CAS  PubMed  Google Scholar 

  74. Rambousek L, Palenicek T, Vales K, Stuchlik A (2014) The effect of psilocin on memory acquisition, retrieval, and consolidation in the rat. Front Behav Neurosci 8:180

    Article  PubMed  PubMed Central  Google Scholar 

  75. Baou M, Boumba VA, Petrikis P, Rallis G, Vougiouklakis T, Mavreas V (2016) A review of genetic alterations in the serotonin pathway and their correlation with psychotic diseases and response to atypical antipsychotics. Schizophr Res 170(1):18–29.https://doi.org/10.1016/j.schres.2015.11.003

    Article  PubMed  Google Scholar 

  76. Aghajanian GK, Marek GJ (1999) Serotonin and hallucinogens. Neuropsychopharmacology 21(2 Suppl):16S–23S

    Article  CAS  PubMed  Google Scholar 

  77. Meltzer HY, Matsubara S, Lee JC (1989) Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J Pharmacol Exp Ther 251(1):238–246

    CAS  PubMed  Google Scholar 

  78. Arnt J, Skarsfeldt T (1998) Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacology 18(2):63–101

    Article  CAS  PubMed  Google Scholar 

  79. Miyamoto S, LaMantia AS, Duncan GE, Sullivan P, Gilmore JH, Lieberman JA (2003) Recent advances in the neurobiology of schizophrenia. Mol Interv 3(1):27–39

    Article  PubMed  Google Scholar 

  80. Farah A (2005) Atypicality of atypical antipsychotics. Prim Care Companion J Clin Psychiatry 7(6):268–274

    Article  PubMed  PubMed Central  Google Scholar 

  81. Remington G, Kapur S (2000) Atypical antipsychotics: are some more atypical than others? Psychopharmacology 148(1):3–15

    Article  CAS  PubMed  Google Scholar 

  82. Clarke WP, Chavera TA, Silva M, Sullivan LC, Berg KA (2013) Signalling profile differences: paliperidone versus risperidone. Br J Pharmacol 170(3):532–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Oyamada Y, Horiguchi M, Rajagopal L, Miyauchi M, Meltzer HY (2015) Combined serotonin (5-HT)1A agonism, 5-HT2A and dopamine D2 receptor antagonism reproduces atypical antipsychotic drug effects on phencyclidine-impaired novel object recognition in rats. Behav Brain Res 285:165–175

    Article  CAS  PubMed  Google Scholar 

  84. Sullivan LC, Clarke WP, Berg KA (2015) Atypical antipsychotics and inverse agonism at 5-HT2 receptors. Curr Pharm Des 21(26):3732–3738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. McCreary AC, Newman-Tancredi A (2015) Serotonin 5-HT1A receptors and antipsychotics—an update in light of new concepts and drugs. Curr Pharm Des 21(26):3725–3731

    Article  CAS  PubMed  Google Scholar 

  86. Bymaster FP, Calligaro DO, Falcone JF, Marsh RD, Moore NA, Tye NC, Seeman P, Wong DT (1996) Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology 14:87–96

    Article  CAS  PubMed  Google Scholar 

  87. Daniel DG, Zimbroff DL, Potkin SG, Reeves KR, Harrigan EP, Lakshminarayanan M (1999) Ziprasidone 80 mg/day and 160 mg/day in the acute exacerbation of schizophrenia and schizoaffective disorder: a 6-week placebo-controlled trial. Ziprasidone Study Group. Neuropsychopharmacology 20:491–505

    Article  CAS  PubMed  Google Scholar 

  88. Seeger TF, Seymour PA, Schmidt AW, Zorn SH, Schulz DW, Lebel LA, Heym J (1995) Ziprasidone (CP-88,059): a new antipsychotic with combined dopamine and serotonin receptor antagonist activity. J Pharmacol Exp Ther 275:101–113

    CAS  PubMed  Google Scholar 

  89. Hill SK, Bishop JR, Palumbo D, Sweeney JA (2010) Effect of second-generation antipsychotics on cognition: current issues and future challenges. Expert Rev Neurother 10(1):43–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wiesel FA, Nordström AL, Farde L, Eriksson B (1994) An open clinical and biochemical study of ritanserin in acute patients with schizophrenia. Psychopharmacology 114(1):31–38

    Article  CAS  PubMed  Google Scholar 

  91. Marek G, Merchant K (2005) Developing therapeutics for schizophrenia and other psychotic disorders. NeuroRx 2(4):579–589

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Castañé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castañé, A., Adell, A. (2018). Schizophrenia. In: Guiard, B., Di Giovanni, G. (eds) 5-HT2A Receptors in the Central Nervous System. The Receptors, vol 32. Humana Press, Cham. https://doi.org/10.1007/978-3-319-70474-6_8

Download citation

Publish with us

Policies and ethics