Skip to main content

Serotonergic Receptor 5-HT2A in the Cardiosympathovagal System

  • Chapter
  • First Online:
Book cover 5-HT2A Receptors in the Central Nervous System

Part of the book series: The Receptors ((REC,volume 32))

Abstract

The serotonin receptor 5-HT2A is widely expressed throughout the central nervous system. While abundant evidence exits implicating 5-HT2A receptors in regulating central nervous system, in particular stress responses and that their expression levels or signaling can contribute to stress-related disorders such as anxiety, depression and aggression; the 5-HT2A receptors is also gaining importance in regulating the activity of the autonomic nervous system. Elucidating the functional specificity and significance of the 5HT2A receptor in autonomic function is a challenge given the existence and often co-localization of other 5HT2 receptor subtypes, the central and peripheral expression pattern of the 5HT2A receptor, and the relative poor selectivity of the pharmacological agents used to identify their function. Data has long been accumulated indicating that the 5-HT2A receptor-induced regulation of the autonomic nervous system function appears to be mediated, at least in part, through the regulation of the serotoninergic afferents and efferents to the nucleus tractus solitarius. In this article, we review the role of 5-HT2A receptor function in the modulation of cardiac sympathovagal balance with special emphasis on the networks by which 5-HT2A receptors modulate the function of the nucleus tractus solitarius in regulating the baroreflex and autonomic function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. El-Merahbi R, Löffler M, Mayer A, Sumara G (2015) The roles of peripheral serotonin in metabolic homeostasis. FEBS Lett 589(15):1728–1734

    Article  CAS  PubMed  Google Scholar 

  2. De Clerck F, Xhonneux B, Leysen J, Janssen PA (1984) Evidence for functional 5-HT2 receptor sites on human blood platelets. Biochem Pharmacol 33(17):2807–2811

    Article  PubMed  Google Scholar 

  3. De Chaffoy de Courcelles D, Leysen JE, De Clerck F, Van Belle H, Janssen PA (1985) Evidence that phospholipid turnover is the signal transducing system coupled to serotonin-S2 receptor sites. J Biol Chem 260(12):7603–7608

    PubMed  Google Scholar 

  4. Duerschmied D, Bode C (2009) The role of serotonin in haemostasis. Hamostaseologie 29(4):356–359

    CAS  PubMed  Google Scholar 

  5. Henninger DD, Panés J, Eppihimer M, Russell J, Gerritsen M, Anderson DC, Granger DN (1997) Cytokine-induced VCAM-1 and ICAM-1 expression in different organs of the mouse. J Immunol 158(4):1825–1832

    CAS  PubMed  Google Scholar 

  6. Kato S, Kumamoto H, Hirano M, Akiyama H, Kaneko N (1998) Expression of 5-HT2A and 5-HT1B receptor mRNA in blood vessels. Mol Cell Biochem 199(1–2):57–61

    Google Scholar 

  7. Dürk T, Panther E, Müller T, Sorichter S, Ferrari D, Pizzirani C, Di Virgilio F, Myrtek D, Norgauer J, Idzko M (2005) 5-Hydroxytryptamine modulates cytokine and chemokine production in LPS-primed human monocytes via stimulation of different 5-HTR subtypes. Int Immunol 17(5):599–606

    Article  PubMed  Google Scholar 

  8. Kaumann AJ, Levy FO (2006) 5-hydroxytryptamine receptors in the human cardiovascular system. Pharmacol Ther 111(3):674–706

    Article  CAS  PubMed  Google Scholar 

  9. Huang J, Pickel VM (2003) Ultrastructural localization of serotonin 2A and N-methyl-D-aspartate receptors in somata and dendrites of single neurons within rat dorsal motor nucleus of the vagus. J Comp Neurol 455(2):270–280

    Article  CAS  PubMed  Google Scholar 

  10. Zhang G, Stackman RW Jr (2015) The role of serotonin 5-HT2A receptors in memory and cognition. Front Pharmacol 6:225

    PubMed  PubMed Central  Google Scholar 

  11. Browning KN, Travagli RA (1999) Characterization of the in vitro effects of 5-hydroxytryptamine (5-HT) on identified neurones of the rat dorsal motor nucleus of the vagus (DMV). Br J Pharmacol 128(6):1307–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cui RJ, Roberts BL, Zhao H, Zhu M, Appleyard SM (2012) Serotonin activates catecholamine neurons in the solitary tract nucleus by increasing spontaneous glutamate inputs. J Neurosci 32(46):16530–16538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Feldman PD (1994) Electrophysiological effects of serotonin in the solitary tract nucleus of the rat. Naunyn Schmiedeberg’s Arch Pharmacol 349(5):447–454

    Article  CAS  Google Scholar 

  14. Feldman PD (1995) Effects of serotonin-1 and serotonin-2 receptor agonists on neuronal activity in the nucleus tractus solitarius. J Auton Nerv Syst 56(1–2):119–124

    Article  CAS  PubMed  Google Scholar 

  15. Maley B, Elde R (1982) Immunohistochemical localization of putative neurotransmitters within the feline nucleus tractus solitarii. Neuroscience 7(10):2469–2490

    Article  CAS  PubMed  Google Scholar 

  16. Pickel VM, Joh TH, Chan J, Beaudet A (1984) Serotoninergic terminals: ultrastructure and synaptic interaction with catecholamine-containing neurons in the medial nuclei of the solitary tracts. J Comp Neurol 225(2):291–301

    Article  CAS  PubMed  Google Scholar 

  17. Steinbusch HW (1981) Distribution of serotonin immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience 6(4):557–618

    Article  CAS  PubMed  Google Scholar 

  18. Calzà L, Giardino L, Grimaldi R, Rigoli M, Steinbusch HW, Tiengo M (1985) Presence of 5-HT-positive neurons in the medial nuclei of the solitary tract. Brain Res 347(1):135–139

    Article  PubMed  Google Scholar 

  19. Curtis JT, Anderson MB, Curtis KS (2013) Regional differences in serotonin content in the nucleus of the solitary tract of male rats after hypovolemia produced by polyethylene glycol. J Physiol Sci 63(1):39–46

    Article  CAS  PubMed  Google Scholar 

  20. Thor KB, Helke CJ (1987) Serotonin- and substance P-containing to the nucleus tractus solitarii of the rat. J Comp Neurol 265(2):275–293

    Article  CAS  PubMed  Google Scholar 

  21. Schaffar N, Kessler JP, Bosler O, Jean A (1988) Central serotonergic projections to the nucleus tractus solitarii: evidence from a double labeling study in the rat. Neuroscience 26(3):951–958

    Article  CAS  PubMed  Google Scholar 

  22. Nosjean A, Compoint C, Buisseret-Delmas C, Orer HS, Merahi N, Puizillout JJ, Laguzzi R (1990) Serotonergic projections from the nodose ganglia to the nucleus tractus solitarius: an immunohistochemical and double labeling study in the rat. Neurosci Lett 114(1):22–26

    Article  CAS  PubMed  Google Scholar 

  23. Sykes RM, Spyer KM, Izzo PN (1994) Central distribution of substance P, calcitonin gene-related peptide and 5-hydroxytryptamine in vagal sensory afferents in the rat dorsal medulla. Neuroscience 59:195–210

    Article  CAS  PubMed  Google Scholar 

  24. Shapiro RE, Miselis RR (1985) The central neural connections of the area postrema of the rat. J Comp Neurol 234(3):344–364

    Article  CAS  PubMed  Google Scholar 

  25. Jordan D (2005) Vagal control of the heart: central serotonergic (5-HT) mechanisms. Exp Physiol 90(2):175–181

    Article  CAS  PubMed  Google Scholar 

  26. Austgen JR, Kline DD (2013) Endocannabinoids blunt the augmentation of synaptic transmission by serotonin 2A receptors in the nucleus tractus solitarii (nTS). Brain Res 1537:27–36

    Article  CAS  PubMed  Google Scholar 

  27. Brozoski DT, Dean C, Hopp FA, Hillard CJ, Seagard JL (2009) Differential endocannabinoid regulation of baroreflex-evoked sympathoinhibition in normotensive versus hypertensive rats. Auton Neurosci 150(1–2):82–93

    Article  CAS  PubMed  Google Scholar 

  28. Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M (2009) Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 89(1):309–380

    Article  CAS  PubMed  Google Scholar 

  29. Victor RG (2015) Carotid baroreflex activation therapy for resistant hypertension. Nat Rev Cardiol 12(8):451–463

    Article  PubMed  Google Scholar 

  30. Sapru HN (1991) Baroreceptor reflex components and their alteration in hypertension. In: Zucker IH, Gilmore JP (eds) Reflex control of circulation. CRC, Boca Raton, pp 195–214

    Google Scholar 

  31. Aicher SA, Milner TA, Pickel VM, Reis DJ (2000) Anatomical substrates for baroreflex sympathoinhibition in the rat. Brain Res Bull 51(2):107–110

    Article  CAS  PubMed  Google Scholar 

  32. Dampney RAL (1994) Functional organization of central pathways regulating the cardiovascular system. Physiol Rev 74(2):323–364

    Article  CAS  PubMed  Google Scholar 

  33. Dampney RAL, Coleman MJ, Fontes MAP, Hirooka Y, Horiuchi J, Li YW, Polson JW, Potts PD, Tagawa T (2002) Central mechanisms underlying short- and long-term regulation of the cardiovascular system. Clin Exp Pharmacol Physiol 29(4):261–268

    Article  CAS  PubMed  Google Scholar 

  34. Singewald N, Philippu A (1996) Involvement of biogenic amines and amino acids in the central regulation of cardiovascular homeostasis. Trends Pharmacol Sci 17(10):356–363

    Article  CAS  PubMed  Google Scholar 

  35. Stauss HM (2002) Baroreceptor reflex function. Am J Physiol Regul Integr Comp Physiol 283(2):R284–R286

    Article  CAS  PubMed  Google Scholar 

  36. Knowles ID, Ramage AG (1999) Evidence for a role for central 5-HT2B as well as 5-HT2A receptors in cardiovascular regulation in anaesthetized rats. Br J Pharmacol 128(3):530–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shvaloff A, Laguzzi R (1986) Serotonin receptors in the rat nucleus tractus solitarii and cardiovascular regulation. Eur J Pharmacol 132(2–3):283–288

    Article  CAS  PubMed  Google Scholar 

  38. Sevoz-Couche C (2006) Cardiac baroreflex facilitation evoked by hypothalamus and prefrontal cortex stimulation: role of the nucleus tractus solitarius 5-HT2A receptors. AJP: Regul Integr Comp Physiol 291(4):R1007-R1015

    Google Scholar 

  39. Comet MA, Vernard JF, Hamon M, Laguzzi R, Sévoz-Couche C (2007) Activation of nucleus tractus solitarius 5-HT2A but not other 5-HT2 receptor subtypes inhibits the sympathetic activity in rats. Eur J Neurosci 26(2):345–354

    Article  PubMed  Google Scholar 

  40. Shen FM, Wang J, Ni CR, JG Y, Wang WZ, DF S (2007) Ketanserin-induced baroreflex enhancement in spontaneously hypertensive rats depends on central 5-HT(2A) receptors. Clin Exp Pharmacol Physiol 34(8):702–707

    Article  CAS  PubMed  Google Scholar 

  41. Mc Call RB, Clement ME (1994) Role of serotonin1A and serotonin2 receptors in the central regulation of the cardiovascular system. Pharmacol Rev 46(3):231–243

    CAS  Google Scholar 

  42. Ramage AG (2001) Central cardiovascular regulation and 5-hydroxytryptamine receptors. Brain Res Bull 56(5):425–439

    Article  CAS  PubMed  Google Scholar 

  43. Nosjean A, Hamon M, Darmon M (2002) 5-HT2A receptors are expressed by catecholaminergic neurons in the rat nucleus tractus solitarii. Neuroreport 13(17):2365–2369

    Article  CAS  PubMed  Google Scholar 

  44. Guiard BP, El Mansari M, Blier P (2009) Prospect of a dopamine contribution in the next generation of antidepressant drugs: the triple reuptake inhibitors. Curr Drug Targets 10(11):1069–1084

    Article  CAS  PubMed  Google Scholar 

  45. Mbaki Y, Gardiner J, Mc Murray G, Ramage AG (2012) 5-HT 2A receptor activation of the external urethral sphincter and 5-HT 2C receptor inhibition of micturition: a study based on pharmacokinetics in the anaesthetized female rat. Eur J Pharmacol 682(1–3):142–152

    Article  CAS  PubMed  Google Scholar 

  46. Wang Y, Ramage AG, Jordan D (1997) In vivo effects of 5-hydroxytryptamine receptor activation on rat nucleus tractus solitarius neurones excited by vagal C-fibre afferents. Neuropharmacology 36(4–5):489–498

    Article  CAS  PubMed  Google Scholar 

  47. Sévoz-Couche C, Spyer KM, Jordan D (2000) In vivo modulation of vagal-identified dorsal medullary neurones by activation of different 5-Hydroxytryptamine(2) receptors in rats. Br J Pharmacol 131(7):1445–1453

    Article  PubMed  PubMed Central  Google Scholar 

  48. Vantrease JE, Dudek N, Don Carlos LL, Scrogin KE (2015) 5-HT1A receptors of the nucleus tractus solitarii facilitate sympathetic recovery following hypotensive hemorrhage in rats. Am J Physiol Heart Circ Physiol 309(2):H335–H344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ullmer C, Schmuck K, Kalkman HO, Lübbert H (1995) Expression of serotonin receptor mRNAs in blood vessels. FEBS Lett 370(3):215–221

    Article  CAS  PubMed  Google Scholar 

  50. Bush E, Fielitz J, Melvin L, Martinez-Arnold M, Mc Kinsey TA, Plichta R, Olson EN (2004) A small molecular activator of cardiac hypertrophy uncovered in a chemical screen for modifiers of the calcineurin signaling pathway. Proc Natl Acad Sci U S A 101(9):2870–2875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kaumann AJ, Parsons AA, Brown AM (1993) Human arterial constrictor serotonin receptors. Cardiovasc Res 27(12):2094–2103

    Article  CAS  PubMed  Google Scholar 

  52. Xu J, Jian B, Chu R, Lu Z, Li Q, Dunlop J, Rosenzweig-Lipson S, Mc Gonigle P, Levy RJ, Liang B (2002) Serotonin mechanisms in heart valve disease II—the 5-HT2 receptor and its signaling pathway in aortic valve interstitial cells. Am J Pathol 161(6):2209–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hutcheson JD, Setola V, Roth BL, Merryman WD (2011) Serotonin receptors and heart valve disease—it was meant 2B. Pharmacol Ther 132(2):146–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lairez O, Cognet T, Schaak S, Calise D, Guilbeau-Frugier C, Parini A, Mialet-Perez J (2013) Role of serotonin 5-HT2A receptors in the development of cardiac hypertrophy in response to aortic constriction in mice. J Neural Transm (Vienna) 120(6):927–935

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Arvanitis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kermorgant, M., Pavy-Le Traon, A., Senard, J.M., Arvanitis, D.N. (2018). Serotonergic Receptor 5-HT2A in the Cardiosympathovagal System. In: Guiard, B., Di Giovanni, G. (eds) 5-HT2A Receptors in the Central Nervous System. The Receptors, vol 32. Humana Press, Cham. https://doi.org/10.1007/978-3-319-70474-6_6

Download citation

Publish with us

Policies and ethics