Serotonergic Receptor 5-HT2A in the Cardiosympathovagal System

  • M. Kermorgant
  • A. Pavy-Le Traon
  • J. M. Senard
  • D. N. Arvanitis
Part of the The Receptors book series (REC, volume 32)


The serotonin receptor 5-HT2A is widely expressed throughout the central nervous system. While abundant evidence exits implicating 5-HT2A receptors in regulating central nervous system, in particular stress responses and that their expression levels or signaling can contribute to stress-related disorders such as anxiety, depression and aggression; the 5-HT2A receptors is also gaining importance in regulating the activity of the autonomic nervous system. Elucidating the functional specificity and significance of the 5HT2A receptor in autonomic function is a challenge given the existence and often co-localization of other 5HT2 receptor subtypes, the central and peripheral expression pattern of the 5HT2A receptor, and the relative poor selectivity of the pharmacological agents used to identify their function. Data has long been accumulated indicating that the 5-HT2A receptor-induced regulation of the autonomic nervous system function appears to be mediated, at least in part, through the regulation of the serotoninergic afferents and efferents to the nucleus tractus solitarius. In this article, we review the role of 5-HT2A receptor function in the modulation of cardiac sympathovagal balance with special emphasis on the networks by which 5-HT2A receptors modulate the function of the nucleus tractus solitarius in regulating the baroreflex and autonomic function.


Baroreflex Autonomic function Cardiac sympathovagal balance Nucleus tractus solitarius Serotoninergic afferents 


  1. 1.
    El-Merahbi R, Löffler M, Mayer A, Sumara G (2015) The roles of peripheral serotonin in metabolic homeostasis. FEBS Lett 589(15):1728–1734CrossRefPubMedGoogle Scholar
  2. 2.
    De Clerck F, Xhonneux B, Leysen J, Janssen PA (1984) Evidence for functional 5-HT2 receptor sites on human blood platelets. Biochem Pharmacol 33(17):2807–2811CrossRefPubMedGoogle Scholar
  3. 3.
    De Chaffoy de Courcelles D, Leysen JE, De Clerck F, Van Belle H, Janssen PA (1985) Evidence that phospholipid turnover is the signal transducing system coupled to serotonin-S2 receptor sites. J Biol Chem 260(12):7603–7608PubMedGoogle Scholar
  4. 4.
    Duerschmied D, Bode C (2009) The role of serotonin in haemostasis. Hamostaseologie 29(4):356–359PubMedGoogle Scholar
  5. 5.
    Henninger DD, Panés J, Eppihimer M, Russell J, Gerritsen M, Anderson DC, Granger DN (1997) Cytokine-induced VCAM-1 and ICAM-1 expression in different organs of the mouse. J Immunol 158(4):1825–1832PubMedGoogle Scholar
  6. 6.
    Kato S, Kumamoto H, Hirano M, Akiyama H, Kaneko N (1998) Expression of 5-HT2A and 5-HT1B receptor mRNA in blood vessels. Mol Cell Biochem 199(1–2):57–61Google Scholar
  7. 7.
    Dürk T, Panther E, Müller T, Sorichter S, Ferrari D, Pizzirani C, Di Virgilio F, Myrtek D, Norgauer J, Idzko M (2005) 5-Hydroxytryptamine modulates cytokine and chemokine production in LPS-primed human monocytes via stimulation of different 5-HTR subtypes. Int Immunol 17(5):599–606CrossRefPubMedGoogle Scholar
  8. 8.
    Kaumann AJ, Levy FO (2006) 5-hydroxytryptamine receptors in the human cardiovascular system. Pharmacol Ther 111(3):674–706CrossRefPubMedGoogle Scholar
  9. 9.
    Huang J, Pickel VM (2003) Ultrastructural localization of serotonin 2A and N-methyl-D-aspartate receptors in somata and dendrites of single neurons within rat dorsal motor nucleus of the vagus. J Comp Neurol 455(2):270–280CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang G, Stackman RW Jr (2015) The role of serotonin 5-HT2A receptors in memory and cognition. Front Pharmacol 6:225PubMedPubMedCentralGoogle Scholar
  11. 11.
    Browning KN, Travagli RA (1999) Characterization of the in vitro effects of 5-hydroxytryptamine (5-HT) on identified neurones of the rat dorsal motor nucleus of the vagus (DMV). Br J Pharmacol 128(6):1307–1315CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cui RJ, Roberts BL, Zhao H, Zhu M, Appleyard SM (2012) Serotonin activates catecholamine neurons in the solitary tract nucleus by increasing spontaneous glutamate inputs. J Neurosci 32(46):16530–16538CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Feldman PD (1994) Electrophysiological effects of serotonin in the solitary tract nucleus of the rat. Naunyn Schmiedeberg’s Arch Pharmacol 349(5):447–454CrossRefGoogle Scholar
  14. 14.
    Feldman PD (1995) Effects of serotonin-1 and serotonin-2 receptor agonists on neuronal activity in the nucleus tractus solitarius. J Auton Nerv Syst 56(1–2):119–124CrossRefPubMedGoogle Scholar
  15. 15.
    Maley B, Elde R (1982) Immunohistochemical localization of putative neurotransmitters within the feline nucleus tractus solitarii. Neuroscience 7(10):2469–2490CrossRefPubMedGoogle Scholar
  16. 16.
    Pickel VM, Joh TH, Chan J, Beaudet A (1984) Serotoninergic terminals: ultrastructure and synaptic interaction with catecholamine-containing neurons in the medial nuclei of the solitary tracts. J Comp Neurol 225(2):291–301CrossRefPubMedGoogle Scholar
  17. 17.
    Steinbusch HW (1981) Distribution of serotonin immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience 6(4):557–618CrossRefPubMedGoogle Scholar
  18. 18.
    Calzà L, Giardino L, Grimaldi R, Rigoli M, Steinbusch HW, Tiengo M (1985) Presence of 5-HT-positive neurons in the medial nuclei of the solitary tract. Brain Res 347(1):135–139CrossRefPubMedGoogle Scholar
  19. 19.
    Curtis JT, Anderson MB, Curtis KS (2013) Regional differences in serotonin content in the nucleus of the solitary tract of male rats after hypovolemia produced by polyethylene glycol. J Physiol Sci 63(1):39–46CrossRefPubMedGoogle Scholar
  20. 20.
    Thor KB, Helke CJ (1987) Serotonin- and substance P-containing to the nucleus tractus solitarii of the rat. J Comp Neurol 265(2):275–293CrossRefPubMedGoogle Scholar
  21. 21.
    Schaffar N, Kessler JP, Bosler O, Jean A (1988) Central serotonergic projections to the nucleus tractus solitarii: evidence from a double labeling study in the rat. Neuroscience 26(3):951–958CrossRefPubMedGoogle Scholar
  22. 22.
    Nosjean A, Compoint C, Buisseret-Delmas C, Orer HS, Merahi N, Puizillout JJ, Laguzzi R (1990) Serotonergic projections from the nodose ganglia to the nucleus tractus solitarius: an immunohistochemical and double labeling study in the rat. Neurosci Lett 114(1):22–26CrossRefPubMedGoogle Scholar
  23. 23.
    Sykes RM, Spyer KM, Izzo PN (1994) Central distribution of substance P, calcitonin gene-related peptide and 5-hydroxytryptamine in vagal sensory afferents in the rat dorsal medulla. Neuroscience 59:195–210CrossRefPubMedGoogle Scholar
  24. 24.
    Shapiro RE, Miselis RR (1985) The central neural connections of the area postrema of the rat. J Comp Neurol 234(3):344–364CrossRefPubMedGoogle Scholar
  25. 25.
    Jordan D (2005) Vagal control of the heart: central serotonergic (5-HT) mechanisms. Exp Physiol 90(2):175–181CrossRefPubMedGoogle Scholar
  26. 26.
    Austgen JR, Kline DD (2013) Endocannabinoids blunt the augmentation of synaptic transmission by serotonin 2A receptors in the nucleus tractus solitarii (nTS). Brain Res 1537:27–36CrossRefPubMedGoogle Scholar
  27. 27.
    Brozoski DT, Dean C, Hopp FA, Hillard CJ, Seagard JL (2009) Differential endocannabinoid regulation of baroreflex-evoked sympathoinhibition in normotensive versus hypertensive rats. Auton Neurosci 150(1–2):82–93CrossRefPubMedGoogle Scholar
  28. 28.
    Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M (2009) Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 89(1):309–380CrossRefPubMedGoogle Scholar
  29. 29.
    Victor RG (2015) Carotid baroreflex activation therapy for resistant hypertension. Nat Rev Cardiol 12(8):451–463CrossRefPubMedGoogle Scholar
  30. 30.
    Sapru HN (1991) Baroreceptor reflex components and their alteration in hypertension. In: Zucker IH, Gilmore JP (eds) Reflex control of circulation. CRC, Boca Raton, pp 195–214Google Scholar
  31. 31.
    Aicher SA, Milner TA, Pickel VM, Reis DJ (2000) Anatomical substrates for baroreflex sympathoinhibition in the rat. Brain Res Bull 51(2):107–110CrossRefPubMedGoogle Scholar
  32. 32.
    Dampney RAL (1994) Functional organization of central pathways regulating the cardiovascular system. Physiol Rev 74(2):323–364CrossRefPubMedGoogle Scholar
  33. 33.
    Dampney RAL, Coleman MJ, Fontes MAP, Hirooka Y, Horiuchi J, Li YW, Polson JW, Potts PD, Tagawa T (2002) Central mechanisms underlying short- and long-term regulation of the cardiovascular system. Clin Exp Pharmacol Physiol 29(4):261–268CrossRefPubMedGoogle Scholar
  34. 34.
    Singewald N, Philippu A (1996) Involvement of biogenic amines and amino acids in the central regulation of cardiovascular homeostasis. Trends Pharmacol Sci 17(10):356–363CrossRefPubMedGoogle Scholar
  35. 35.
    Stauss HM (2002) Baroreceptor reflex function. Am J Physiol Regul Integr Comp Physiol 283(2):R284–R286CrossRefPubMedGoogle Scholar
  36. 36.
    Knowles ID, Ramage AG (1999) Evidence for a role for central 5-HT2B as well as 5-HT2A receptors in cardiovascular regulation in anaesthetized rats. Br J Pharmacol 128(3):530–542CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Shvaloff A, Laguzzi R (1986) Serotonin receptors in the rat nucleus tractus solitarii and cardiovascular regulation. Eur J Pharmacol 132(2–3):283–288CrossRefPubMedGoogle Scholar
  38. 38.
    Sevoz-Couche C (2006) Cardiac baroreflex facilitation evoked by hypothalamus and prefrontal cortex stimulation: role of the nucleus tractus solitarius 5-HT2A receptors. AJP: Regul Integr Comp Physiol 291(4):R1007-R1015Google Scholar
  39. 39.
    Comet MA, Vernard JF, Hamon M, Laguzzi R, Sévoz-Couche C (2007) Activation of nucleus tractus solitarius 5-HT2A but not other 5-HT2 receptor subtypes inhibits the sympathetic activity in rats. Eur J Neurosci 26(2):345–354CrossRefPubMedGoogle Scholar
  40. 40.
    Shen FM, Wang J, Ni CR, JG Y, Wang WZ, DF S (2007) Ketanserin-induced baroreflex enhancement in spontaneously hypertensive rats depends on central 5-HT(2A) receptors. Clin Exp Pharmacol Physiol 34(8):702–707CrossRefPubMedGoogle Scholar
  41. 41.
    Mc Call RB, Clement ME (1994) Role of serotonin1A and serotonin2 receptors in the central regulation of the cardiovascular system. Pharmacol Rev 46(3):231–243Google Scholar
  42. 42.
    Ramage AG (2001) Central cardiovascular regulation and 5-hydroxytryptamine receptors. Brain Res Bull 56(5):425–439CrossRefPubMedGoogle Scholar
  43. 43.
    Nosjean A, Hamon M, Darmon M (2002) 5-HT2A receptors are expressed by catecholaminergic neurons in the rat nucleus tractus solitarii. Neuroreport 13(17):2365–2369CrossRefPubMedGoogle Scholar
  44. 44.
    Guiard BP, El Mansari M, Blier P (2009) Prospect of a dopamine contribution in the next generation of antidepressant drugs: the triple reuptake inhibitors. Curr Drug Targets 10(11):1069–1084CrossRefPubMedGoogle Scholar
  45. 45.
    Mbaki Y, Gardiner J, Mc Murray G, Ramage AG (2012) 5-HT 2A receptor activation of the external urethral sphincter and 5-HT 2C receptor inhibition of micturition: a study based on pharmacokinetics in the anaesthetized female rat. Eur J Pharmacol 682(1–3):142–152CrossRefPubMedGoogle Scholar
  46. 46.
    Wang Y, Ramage AG, Jordan D (1997) In vivo effects of 5-hydroxytryptamine receptor activation on rat nucleus tractus solitarius neurones excited by vagal C-fibre afferents. Neuropharmacology 36(4–5):489–498CrossRefPubMedGoogle Scholar
  47. 47.
    Sévoz-Couche C, Spyer KM, Jordan D (2000) In vivo modulation of vagal-identified dorsal medullary neurones by activation of different 5-Hydroxytryptamine(2) receptors in rats. Br J Pharmacol 131(7):1445–1453CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Vantrease JE, Dudek N, Don Carlos LL, Scrogin KE (2015) 5-HT1A receptors of the nucleus tractus solitarii facilitate sympathetic recovery following hypotensive hemorrhage in rats. Am J Physiol Heart Circ Physiol 309(2):H335–H344CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Ullmer C, Schmuck K, Kalkman HO, Lübbert H (1995) Expression of serotonin receptor mRNAs in blood vessels. FEBS Lett 370(3):215–221CrossRefPubMedGoogle Scholar
  50. 50.
    Bush E, Fielitz J, Melvin L, Martinez-Arnold M, Mc Kinsey TA, Plichta R, Olson EN (2004) A small molecular activator of cardiac hypertrophy uncovered in a chemical screen for modifiers of the calcineurin signaling pathway. Proc Natl Acad Sci U S A 101(9):2870–2875CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kaumann AJ, Parsons AA, Brown AM (1993) Human arterial constrictor serotonin receptors. Cardiovasc Res 27(12):2094–2103CrossRefPubMedGoogle Scholar
  52. 52.
    Xu J, Jian B, Chu R, Lu Z, Li Q, Dunlop J, Rosenzweig-Lipson S, Mc Gonigle P, Levy RJ, Liang B (2002) Serotonin mechanisms in heart valve disease II—the 5-HT2 receptor and its signaling pathway in aortic valve interstitial cells. Am J Pathol 161(6):2209–2218CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Hutcheson JD, Setola V, Roth BL, Merryman WD (2011) Serotonin receptors and heart valve disease—it was meant 2B. Pharmacol Ther 132(2):146–157CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Lairez O, Cognet T, Schaak S, Calise D, Guilbeau-Frugier C, Parini A, Mialet-Perez J (2013) Role of serotonin 5-HT2A receptors in the development of cardiac hypertrophy in response to aortic constriction in mice. J Neural Transm (Vienna) 120(6):927–935CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • M. Kermorgant
    • 1
  • A. Pavy-Le Traon
    • 1
    • 2
  • J. M. Senard
    • 1
    • 3
  • D. N. Arvanitis
    • 1
  1. 1.Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1048, Université Paul SabatierToulouseFrance
  2. 2.Department of NeurologyInstitute for Neurosciences, University Hospital of ToulouseToulouseFrance
  3. 3.Department of Clinical PharmacologyUniversity Hospital of ToulouseToulouseFrance

Personalised recommendations