Advertisement

Brain Distribution

Chapter
Part of the The Receptors book series (REC, volume 32)

Abstract

The 5-HT2A receptor type (5-HT2AR) is a G-protein-coupled receptor widely distributed in the central nervous system, indicating its participation in numerous neurological effects serotonin-mediated. The 5-HT2AR has attracted interest as a potential drug target for the treatment of several important neurologic and psychiatric disorders, such as epilepsy and depression. The distribution of the 5-HT2AR has been investigated by immunohistochemical stainings, in situ hybridization experiments, and physiologic/pharmacologic procedures. This review summarizes the cellular localization of the 5-HT2AR in the brains, providing the neuronal pathways modulated by serotonin through this specific receptor type.

Keywords

5-HT2A receptor Serotonin Thelencephalon Diencephalon Brainstem 

References

  1. 1.
    Aghajanian GK (1995) Electrophysiology of serotonin receptor subtypes and signal transduction pathways. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven Press, New York, pp 451–460Google Scholar
  2. 2.
    Barnes NM, Sharp T (1999) A review of central 5-HT receptors and theirs function. Neuropharmacology 38:1083–1152CrossRefPubMedGoogle Scholar
  3. 3.
    Lambe EK, Aghajanian GK (2001) The role of Kv1.2-containing potassium channels in serotonin-induced glutamate release from thalamocortical terminals in rat frontal cortex. J Neurosci 21:9955–9963PubMedGoogle Scholar
  4. 4.
    Raymond J, Mukhin Y, Gelasco A, Turner J, Collinsworth G, Gettys T, Grewal J, Garnovskaya M (2001) Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol Ther 92:179–212CrossRefPubMedGoogle Scholar
  5. 5.
    Bombardi C (2011) Distribution of 5-HT2A receptor immunoreactivity in the rat amygdaloid complex and colocalization with γ-aminobutyric acid. Brain Res 1370:112–128CrossRefPubMedGoogle Scholar
  6. 6.
    Bombardi C (2012) Neuronal localization of 5-HT2A receptor immunoreactivity in the rat hippocampal region. Brain Res Bull 87:259–273CrossRefPubMedGoogle Scholar
  7. 7.
    Bombardi C (2014) Neuronal localization of the 5-HT2 receptor family in the amygdaloid complex. Front Pharmacol 5(68):1–10Google Scholar
  8. 8.
    Bombardi C, Di Giovanni G (2013) Functional anatomy of 5-HT2A receptors in the amygdala and hippocampal complex: relevance to memory functions. Exp Brain Res 230:427–439CrossRefPubMedGoogle Scholar
  9. 9.
    Cornea-Hébert V, Riad M, Wu C, Singh SK, Descarries L (1999) Cellular end subcellular distribution of the serotonin 5-HT2A receptor in the central nervous system of adult rat. J Comp Neurol 409:187–209CrossRefPubMedGoogle Scholar
  10. 10.
    Jiang X, Xing G, Yang C, Verma A, Zhang L, Li H (2008) Stress impairs 5-HT2A Receptor-mediated serotonergic facilitation of GABA release in juvenile rat basolateral amygdala. Neuropsychopharmacology 33:1–14CrossRefGoogle Scholar
  11. 11.
    McDonald AJ, Mascagni F (2007) Neuronal localization of 5-HT type 2A receptor immunoreactivity in the rat basolateral amygdala. Neuroscience 146:306–320CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Meneses A (1999) 5-HT system and cognition. Neurosci Biobehav Rev 23:1111–1125CrossRefPubMedGoogle Scholar
  13. 13.
    Meneses A (2002a) Involvement of 5-HT(2A/2B/2C) receptors on memory formation: simple agonism, antagonism, or inverse agonism? Cell Mol Neurobiol 22:675–688CrossRefPubMedGoogle Scholar
  14. 14.
    Meneses A (2002b) Tianeptine: 5-HT uptake sites and 5-HT(1–7) receptors modulate memory formation in an autoshaping Pavlovian/instrumental task. Neurosci Biobehav Rev 26:309–319CrossRefPubMedGoogle Scholar
  15. 15.
    Meneses A (2007) Do serotonin (1–7) receptors modulate short and long-term memory? Neurobiol Learn Mem 87:561–572CrossRefPubMedGoogle Scholar
  16. 16.
    Meneses A, Hong E (1997) A pharmacological analysis of serotoninergic receptors: effects of their activation of blockade in learning. Prog Neuro-Psychopharmacol Biol Psychiatry 21:243–254CrossRefGoogle Scholar
  17. 17.
    Meltzer HY, Huang M (2008) In vivo actions of atypical antispsychotic drug on serononergic and dopaminergic systems. Prog Brain Res 172:177–197CrossRefPubMedGoogle Scholar
  18. 18.
    Xu T, Pandey SC (2000) Cellular localization of serotonin2A (5-HT2A) receptors in the rat brain. Brain Res Bull 51:499–505CrossRefPubMedGoogle Scholar
  19. 19.
    Li QH, Nakadate K, Tanaka-Nakadate S, Nakatsuka D, Cui Y, Watanabe Y (2004) Unique expression patterns of 5-HT2A and 5-HT2C receptors in the rat brain during post natal development: Western blot and immunohistochemical analyses. J Comp Neurol 469:128–140CrossRefPubMedGoogle Scholar
  20. 20.
    Pompeiano M, Palacios JM, Mengod G (1994) Distribution of serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors. Mol Brain Res 23:163–178CrossRefPubMedGoogle Scholar
  21. 21.
    Wright DE, Seroogy KB, Lundgren KH, Davis BM, Jennes L (1995) Comparative localization of serotonin1A,1C, and2 receptor subtype mRNAs in rat brain. J Comp Neurol 351:357–373CrossRefPubMedGoogle Scholar
  22. 22.
    Pazos A, Cortés R, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res 346:231–249CrossRefPubMedGoogle Scholar
  23. 23.
    Radja F, Laporte A, Daval G, Verge D, Gozlan H, Hamon M (1991) Autoradiography of serotonin receptor subtypes in the central nervous system. Neurochemistry International 18:1–15Google Scholar
  24. 24.
    Aghajanian GK, Marek GJ (1999) Serotonin, via 5-HT2A receptors, increases EPSCs in layer V pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate release. Brain Res 825:161–171CrossRefPubMedGoogle Scholar
  25. 25.
    Feldman S, Newman ME, Gur E, Weidenfeld J (1998) Role of serotonin in the amygdala in hypothalamo-pituitary-adrenocortical responses. Neuroreport 9:2007–2009CrossRefPubMedGoogle Scholar
  26. 26.
    Gresch PJ, Strickland LV, Sanders-Bush E (2002) Lysergic acid diethylamide-induced fos expression in rat brain: role of serotonin-2A receptors. Neuroscience 114:707–713CrossRefPubMedGoogle Scholar
  27. 27.
    Harvey JA (2003) Role of the serotonin 5-HT(2A) receptor in learning. Learn Mem 10:355–362CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Martín-Ruiz R, Puig MV, Celada P, Shapiro DA, Roth BL, Mengold G, Artigas F (2001) Control of serotoninergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism. J Neurosci 21:9856–9866PubMedGoogle Scholar
  29. 29.
    Nair SG, Gudelsky GA (2004) Activation of 5-HT2A receptors enhances the release of acetylcholine in the prefrontal cortex and hippocampus of the rat. Synapse 53:202–207CrossRefPubMedGoogle Scholar
  30. 30.
    Rainnie DG (1999) Serotoninergic modulation of neurotransmission in the rat basolateral amygdala. J Neurophysiol 82:69–85CrossRefPubMedGoogle Scholar
  31. 31.
    Stein C, Davidowa H, Albrecht D (2000) 5-HT1A receptor-mediated inhibition and 5-HT2 as well as 5-HT3 receptor-mediated excitation in different subdivisions of the rat amygdala. Synapse 38:328–337CrossRefPubMedGoogle Scholar
  32. 32.
    Stutzmann GE, LeDoux JE (1999) GABAergic antagonist block the inhibitory effects of serotonin in the lateral amygdala: a mechanism for modulation of sensory inputs related to fear conditioning. J Neurosci 19:1–4Google Scholar
  33. 33.
    Stutzmann GE, McEwen BS, LeDoux JE (1998) Serotonin modulation of sensory inputs to the lateral amygdala: dependency on corticosterone. J Neurosci 18:9529–9538PubMedGoogle Scholar
  34. 34.
    Zangrossi H Jr, Graeff FG (1994) Behavioral effects of intra-amygdala injections of GABA and 5-HT acting drugs in the elevated plus-maze. Braz J Med Biol Res 27:2453–2456Google Scholar
  35. 35.
    Puig MV, Watakabe A, Ushimaru M, Yamamori T, Kawaguchi Y (2010) Serotonin modulates fast-spiking interneuron and synchronous activity in the rat prefrontal cortex through 5-HT1A and 5-HT2A receptors. J Neurosci 30:2211–2222CrossRefPubMedGoogle Scholar
  36. 36.
    Sokal DM, Giarola AS, Large CH (2005) Effects of GABAB, 5-HT1A, and 5-HT2 receptor stimulation on activation and inhibition of the rat lateral amygdala following medial geniculate nucleus stimulation in vivo. Brain Res 1031:141–150CrossRefPubMedGoogle Scholar
  37. 37.
    Morilak DA, Garlow SJ, Ciaranello RD (1993) Immunocytochemical localization and description of neurons expressing serotonin2 receptors in the rat brain. Neuroscience 54:701–717CrossRefPubMedGoogle Scholar
  38. 38.
    Morilak DA, Somogyi P, Lujan-Miras R, Ciaranello RD (1994) Neurons expressing 5-HT2 receptors in the rat brain: neurochemical identification of cell types by immunocytochemistry. Neuropsychopharmacology 11:157–166CrossRefPubMedGoogle Scholar
  39. 39.
    Peddie CJ, Davies HA, Colyer FM, Stewart MG, Rodríguez JJ (2008) Colocalisation of serotonin 2A receptors with glutamate receptor subunits NR1 and GluR2 in the dentate gyrus: An ultrastructural study of a modulatory role. Exp Neurol 211:561–573CrossRefPubMedGoogle Scholar
  40. 40.
    Willins DL, Deutch AY, Roth BL (1997) Serotonin 5-HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex. Synapse 27:79–82CrossRefPubMedGoogle Scholar
  41. 41.
    Hamada S, Senzaki K, Hamaguchi-Hamada K, Tabuchi K, Yamamoto H, Yamamoto T, Yoshikawa S, Okano H, Okado N (1998) Localization of 5-HT2A receptor in rat cerebral cortex and olfactory system revealed by immunohistochemistry using two antibodies raised in rabbit and chicken. Mol Brain Res 54:199–211CrossRefPubMedGoogle Scholar
  42. 42.
    Jakab RL, Goldman-Rakic PS (1998) 5-hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci 95:735–740CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Jakab RL, Goldman-Rakic PS (2000) Segregation of serotonin 5-HT2A and 5-HT3 receptors in inhibitory circuits of the primate cerebral cortex. J Comp Neurol 417:337–348CrossRefPubMedGoogle Scholar
  44. 44.
    Jansson A, Tinner B, Bancila M, Vergé D, Steinbusch HWM, Agnati LF, Fuxe K (2001) Relationships of 5-hydroxytryptamine immunoreactive terminal-like varicosities to 5- hydroxytryptamine-2A receptor-immunoreactive neuronal processes in the rat forebrain. J Chem Neuroanat 22:185–203CrossRefPubMedGoogle Scholar
  45. 45.
    Lüttgen M, Ögren SO, Meister B (2004) Chemical identity of 5-HT2A receptor immunoreactive neurons of the rat septal complex and dorsal hippocampus. Brain Res 1010:156–165CrossRefPubMedGoogle Scholar
  46. 46.
    Miner LAH, Backstrom JR, Sanders-Bush E, Sesack SR (2003) Ultrastructural localization of serotonin 2A receptors in the middle layers of the rat prelimbic prefrontal cortex. Neuroscience 116:107–117CrossRefPubMedGoogle Scholar
  47. 47.
    Cornea-Hébert V, Watkins KC, Roth BL, Kroeze WK, Gaudreau P, Leclerc N , Descarries L (2002) Similar ultrastructural distribution of the 5-HT2A serotonin receptor and microtubule-associated protein MAP1A in cortical dendrites of adult rat. Neuroscience 113:23–35Google Scholar
  48. 48.
    de Almeida J, Mengod G (2007) Quantitative analysis of glutamatergic and GABAergic neurons expressing 5-HT(2A) receptors in human and monkey prefrontal cortex. J Neurochem 103:475–486CrossRefPubMedGoogle Scholar
  49. 49.
    Aghajanian GK, Marek GJ (1997) Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology 36:589–599CrossRefPubMedGoogle Scholar
  50. 50.
    Blue ME, Yagaloff KA, Mamounas LA, Hartig PR, Molliver ME (1988) Correspondence between 5-HT2 receptors and serotoninergic axons in rat neocortex. Brain Res 453:315–328CrossRefPubMedGoogle Scholar
  51. 51.
    Amargós-Bosch M, Bortolozzi A, Puig MV, Serrats J, Adell A, Celada P, Toth M, Mengod G, Artigias F (2004) Co-expression and in vivo interaction of serotonin1A and serotonin 2A receptors in pyramidal neurons of prefrontal cortex. Cereb Cortex 14:281–299CrossRefPubMedGoogle Scholar
  52. 52.
    Puig MV, Celada P, Díaz-Mataiax L, Artigias F (2003) In vivo modulation of the activity of pyramidal neurons in the rat medial prefrontal cortex by 5-HT2A receptors. Relationship to thalamocortical afferents. Cereb Cortex 13:1870–1882CrossRefGoogle Scholar
  53. 53.
    Nocjar C, Alex KD, Sonneborn A, Abbas AI, Roth BL, Pehek EA (2015) Serotonin-2C and 2A receptor co-expression on cells in the rat medial prefrontal cortex. Neuroscience 297:22–37CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Santana N, Bortolozzi A, Serrats J, Mengod G, Artigias F (2004) Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 14:1100–1109CrossRefPubMedGoogle Scholar
  55. 55.
    Abi-Saab WM, Bubser M, Roth RH, Deutch AY (1999) 5-HT2 receptor regulation of extracellular GABA levels in the prefrontal cortex. Neuropsychopharmacology 20:92–96CrossRefPubMedGoogle Scholar
  56. 56.
    Ashby CR, Jiang LH, Kasser RJ, Wang RY (1990) Electrophysiological characterization of 5-hydroxytryptamine-2 receptors in the rat medial prefrontal cortex. J Pharmacol Exp Ther 252:171–178PubMedGoogle Scholar
  57. 57.
    Zhou FM, Hablitz JJ (1999) Activation of serotonin receptors modulates synaptic transmission in rat cerebral cortex. J Neurophysiol 82:2989–2999CrossRefPubMedGoogle Scholar
  58. 58.
    Furtak SC, Wei S-M, Agster KL, Burwell RD (2007) Functional neuroanatomy of the parahippocampal region in the rat: the perirhinal and postrhinal cortices. Hippocampus 17:709–722CrossRefPubMedGoogle Scholar
  59. 59.
    Scharfman HE, Witter MP, Schwarcz R (2000) The parahippocampal region. Implications for neurological and psychiatric diseases. Introduction. Ann N Y Acad Sci 911:ix–xiiiCrossRefPubMedGoogle Scholar
  60. 60.
    Witter MP, Amaral DG (2004) Hippocampal formation. In: Paxinos G (ed) The rat nervous system. Elsevier Academic Press, San Diego, pp 635–704CrossRefGoogle Scholar
  61. 61.
    Uneyama H, Munakata M, Akaike N (1992) 5-HT response of rat hippocampal pyramidal cell bodies. Neuroreport 3:633–636CrossRefPubMedGoogle Scholar
  62. 62.
    Amaral DG, Lavenex P (2007) Hippocampal neuroanatomy. In: Andersen P, Morris R, Amaral D, Bliss T, O'Keefe J (eds) The hippocampus book. Oxford University Press, New York, pp 37–114Google Scholar
  63. 63.
    Guo JD, Rainnie DG (2010) Presynaptic 5-HT1B receptor-mediated serotonergic inhibition of glutamate transmission in the bed nucleus of the stria terminalis. Neuroscience 165:1390–1401CrossRefPubMedGoogle Scholar
  64. 64.
    Hashimoto K, Kita H (2008) Serotonin activates presynaptic and postsynaptic receptors in rat globus pallidus. J Neurophysiol 99:1723–1732CrossRefPubMedGoogle Scholar
  65. 65.
    Piguet P, Galvan M (1994) Transient and long-lasting actions of 5-HT on rat dentate gyrus neurones in vitro. J Physiol 481:629–639CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Shen R-Y, Andrade R (1998) 5-hydroxytryptamine 2 receptor facilitates GABAergic neurotransmission in rat hippocampus. J Pharmacol Exp Ther 285:805–812PubMedGoogle Scholar
  67. 67.
    Jha S, Rajendran R, Fernandes KA, Vaidya VA (2008) 5-HT2A/2C receptor blockade regulates progenitor cell proliferation in the adult rat hippocampus. Neurosci Lett 441:210–214CrossRefPubMedGoogle Scholar
  68. 68.
    Ge S, Goh ELK, Sailor KA, Kitabatake Y, Ming G, Song H (2006) GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439:589–593CrossRefPubMedGoogle Scholar
  69. 69.
    Banasr M, Hery M, Printemps R, Daszuta A (2004) Serotonin induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 29:450–460CrossRefPubMedGoogle Scholar
  70. 70.
    Amaral DG, Scharfman HE, Lavenex P (2007) The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res 163:3–22CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Freund TF, Buzsáki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470CrossRefPubMedGoogle Scholar
  72. 72.
    Olucha-Bordonau FE, Fortes-Marco L, Otero-García M, Lanuza E, Martínez- García F (2015) Amygdala: structure and function. In: Paxinos G (ed) The rat nervous system, 4th edn. Academic Press, San Diego, pp 442–480Google Scholar
  73. 73.
    Chen A, Hough J, Li H (2003) Serotonin type II receptor activation facilitates synaptic plasticity via N-Methyl-d-Aspartate-mediated mechanism in the rat basolateral amygdala. Neuroscience 119:53–63CrossRefPubMedGoogle Scholar
  74. 74.
    Mascagni F, McDonald AJ (2007) A novel subpopulation of 5-HT type 3A receptor subunit immunoreactive interneurons in the rat basolateral amygdala. Neuroscience 144:1015–1024CrossRefPubMedGoogle Scholar
  75. 75.
    Radja F, Descarries L, Dewar KM, Reader TA (1993) Serotonin 5-HT1 and 5-HT2 receptors in adult rat brain after neonatal destruction of nigrostriatal dopamine neurons: a quantitative autoradiographic study. Brain Res 606:273–285CrossRefPubMedGoogle Scholar
  76. 76.
    El Mansari M, Radja F, Ferron A, Reader TA, Molina-Holgado E, Descarries L (1994) Hypersensitivity to serotonin and its agonists in serotonin hyperinnervated neostriatum after neonatal dopamine denervation. Eur J Pharmacol 261:171–178CrossRefPubMedGoogle Scholar
  77. 77.
    Mijnster MJ, Raimundo AGV, Koskuba K, Klop H, Docter GJ, Groenewegen HJ, Voorn P (1997) Regional and cellular distribution of serotonin 5-hydroxytryptamine 2a receptor mRNA in the nucleus accumbens, olfactory tubercle, and caudate putamen of the rat. J Comp Neurol 389:1–11CrossRefPubMedGoogle Scholar
  78. 78.
    Ward RP, Dorsa DM (1996) Colocalization of serotonin receptor subtypes 5-HT2A, 5-HT2C, and 5-HT6 with neuropeptides in rat striatum. J Comp Neurol 370:405–414CrossRefPubMedGoogle Scholar
  79. 79.
    Jäkälä P, Sirviö J, Koivisto E, Björklund, Kaukua MJ, Riekkinen P Jr (1995) Modulation of rat neocortical high-voltage spindle activity by 5-HT1/5-HT2 receptor subtype specific drugs. Eur J Pharmacol 282:39–55CrossRefPubMedGoogle Scholar
  80. 80.
    Lakoski JM, Aghajanian GK (1985) Effects of ketanserin on neuronal responses to serotonin in the prefrontal cortex, lateral geniculate and dorsal raphe nucleus. Neuropharmacology 24:265–73Google Scholar
  81. 81.
    Nocjar C, Roth BL, Pehek EA (2002) Localization of 5-HT2A receptors on dopamine cells in subnuclei of the midbrain A10 cell group. Neuroscience 111:163–176CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Veterinary Medical SciencesUniversity of BolognaOzzano dell’EmiliaItaly

Personalised recommendations