5-HT2A Receptor Heterodimerization

  • Sylwia Łukasiewicz
  • Ewa Błasiak
  • Marta Dziedzicka-Wasylewska
Chapter
Part of the The Receptors book series (REC, volume 32)

Abstract

Interaction of serotonin 5-HT2A receptor with other G protein-coupled receptors (GPCRs) have been shown at the behavioral and/or electrophysiological level. In the present chapter evidence for direct physical interactions of this receptor with various GPCRs have been described. The most interesting in the context of antipsychotic drug action mechanism is the interaction of the serotonin 5-HT2A receptor with dopamine D2 receptor, which has been shown both in vitro as well as in the native brain tissue. On the other hand, new understanding of hallucinogenic drugs has been proposed by providing data which demonstrate the formation of heterocomplexes by the 5-HT2A receptor with the metabotropic glutamatergic receptor mGluR2. Methodology used in GPCRs heterodimerization studies has evolved, from radioligand binding, receptor crosslinking, receptor complementation, or co-immunoprecipitation approach to biophysical techniques based on resonance energy transfer—each having their pros and cons, however their use still provides new exciting data concerning the complexity of GPCRs physical interactions, which broaden basal knowledge as well as offer new targets for pharmacological intervention.

Keywords

Central serotonin 5-HT2A receptor G protein-coupled receptors (GPCRs) Heterodimerization Structural aspects Resonance energy transfer Psychotropic drugs 

References

  1. 1.
    Herrick-Davis K, Grinde E, Cowan A, Mazurkiewicz JE (2013) Fluorescence correlation spectroscopy analysis of serotonin, adrenergic, muscarinic, and dopamine receptor dimerization: the oligomer number puzzle. Mol Pharmacol 84(4):630–642CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Pin JP, Neubig R, Bouvier M, Devi L, Filizola M, Javitch JA et al (2007) International Union of Basic and Clinical Pharmacology. LXVII. Recommendations for the recognition and nomenclature of G protein-coupled receptor heteromultimers. Pharmacol Rev 59(1):5–13CrossRefPubMedGoogle Scholar
  3. 3.
    Amargos-Bosch M, Bortolozzi A, Puig MV, Serrats J, Adell A, Celada P et al (2004) Co-expression and in vivo interaction of serotonin1A and serotonin2A receptors in pyramidal neurons of prefrontal cortex. Cereb Cortex 14(3):281–299CrossRefPubMedGoogle Scholar
  4. 4.
    Jakab RL, Goldman-Rakic PS (1998) 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci U S A 95(2):735–740CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    de Almeida J, Mengod G (2007) Quantitative analysis of glutamatergic and GABAergic neurons expressing 5-HT(2A) receptors in human and monkey prefrontal cortex. J Neurochem 103(2):475–486CrossRefPubMedGoogle Scholar
  6. 6.
    Marek GJ (2003) Behavioral evidence for mu-opioid and 5-HT2A receptor interactions. Eur J Pharmacol 474(1):77–83CrossRefPubMedGoogle Scholar
  7. 7.
    Blue ME, Yagaloff KA, Mamounas LA, Hartig PR, Molliver ME (1988) Correspondence between 5-HT2 receptors and serotonergic axons in rat neocortex. Brain Res 453(1–2):315–328CrossRefPubMedGoogle Scholar
  8. 8.
    Tempel A, Zukin RS (1987) Neuroanatomical patterns of the mu, delta, and kappa opioid receptors of rat brain as determined by quantitative in vitro autoradiography. Proc Natl Acad Sci U S A 84(12):4308–4312CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Body S, Cheung TH, Bezzina G, Asgari K, Fone KC, Glennon JC et al (2006) Effects of d-amphetamine and DOI (2,5-dimethoxy-4-iodoamphetamine) on timing behavior: interaction between D1 and 5-HT2A receptors. Psychopharmacology 189(3):331–343CrossRefPubMedGoogle Scholar
  10. 10.
    Moser PC, Moran PM, Frank RA, Kehne JH (1996) Reversal of amphetamine-induced behaviours by MDL 100,907, a selective 5-HT2A antagonist. Behav Brain Res 73(1–2):163–167PubMedGoogle Scholar
  11. 11.
    Doherty MD, Pickel VM (2000) Ultrastructural localization of the serotonin 2A receptor in dopaminergic neurons in the ventral tegmental area. Brain Res 864(2):176–185CrossRefPubMedGoogle Scholar
  12. 12.
    Nocjar C, Roth BL, Pehek EA (2002) Localization of 5-HT(2A) receptors on dopamine cells in subnuclei of the midbrain A10 cell group. Neuroscience 111(1):163–176CrossRefPubMedGoogle Scholar
  13. 13.
    Borroto-Escuela DO, Romero-Fernandez W, Garriga P, Ciruela F, Narvaez M, Tarakanov AO et al (2013) G protein-coupled receptor heterodimerization in the brain. Methods Enzymol 521:281–294CrossRefPubMedGoogle Scholar
  14. 14.
    Albizu L, Holloway T, Gonzalez-Maeso J, Sealfon SC (2011) Functional crosstalk and heteromerization of serotonin 5-HT2A and dopamine D2 receptors. Neuropharmacology 61(4):770–777CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Borroto-Escuela DO, Romero-Fernandez W, Narvaez M, Oflijan J, Agnati LF, Fuxe K (2014) Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2-5-HT2A heteroreceptor complexes. Biochem Biophys Res Commun 443(1):278–284CrossRefPubMedGoogle Scholar
  16. 16.
    Franklin JM, Carrasco GA (2012) Cannabinoid-induced enhanced interaction and protein levels of serotonin 5-HT(2A) and dopamine D(2) receptors in rat prefrontal cortex. J Psychopharmacol 26(10):1333–1347CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Moreno JL, Muguruza C, Umali A, Mortillo S, Holloway T, Pilar-Cuellar F et al (2012) Identification of three residues essential for 5-hydroxytryptamine 2A-metabotropic glutamate 2 (5-HT2A.mGlu2) receptor heteromerization and its psychoactive behavioral function. J Biol Chem 287(53):44301–44319CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gonzalez-Maeso J, Ang RL, Yuen T, Chan P, Weisstaub NV, Lopez-Gimenez JF et al (2008) Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452(7183):93–97CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fribourg M, Moreno JL, Holloway T, Provasi D, Baki L, Mahajan R et al (2011) Decoding the signaling of a GPCR heteromeric complex reveals a unifying mechanism of action of antipsychotic drugs. Cell 147(5):1011–1023CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gonzalez-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R et al (2007) Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 53(3):439–452CrossRefPubMedGoogle Scholar
  21. 21.
    Moreno JL, Holloway T, Albizu L, Sealfon SC, Gonzalez-Maeso J (2011) Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists. Neurosci Lett 493(3):76–79CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Delille HK, Becker JM, Burkhardt S, Bleher B, Terstappen GC, Schmidt M et al (2012) Heterocomplex formation of 5-HT2A-mGlu2 and its relevance for cellular signaling cascades. Neuropharmacology 62(7):2184–2191CrossRefPubMedGoogle Scholar
  23. 23.
    Delille HK, Mezler M, Marek GJ (2013) The two faces of the pharmacological interaction of mGlu2 and 5-HT(2)A—relevance of receptor heterocomplexes and interaction through functional brain pathways. Neuropharmacology 70:296–305CrossRefPubMedGoogle Scholar
  24. 24.
    Perez-Aguilar JM, Shan J, LeVine MV, Khelashvili G, Weinstein H (2014) A functional selectivity mechanism at the serotonin-2A GPCR involves ligand-dependent conformations of intracellular loop 2. J Am Chem Soc 136(45):16044–16054CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ferre S, Baler R, Bouvier M, Caron MG, Devi LA, Durroux T et al (2009) Building a new conceptual framework for receptor heteromers. Nat Chem Biol 5(3):131–134CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kunishima N, Shimada Y, Tsuji Y, Sato T, Yamamoto M, Kumasaka T et al (2000) Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407(6807):971–977CrossRefPubMedGoogle Scholar
  27. 27.
    Pagano A, Rovelli G, Mosbacher J, Lohmann T, Duthey B, Stauffer D et al (2001) C-terminal interaction is essential for surface trafficking but not for heteromeric assembly of GABA(b) receptors. J Neurosci 21(4):1189–1202PubMedGoogle Scholar
  28. 28.
    Gouldson PR, Higgs C, Smith RE, Dean MK, Gkoutos GV, Reynolds CA (2000) Dimerization and domain swapping in G-protein-coupled receptors: a computational study. Neuropsychopharmacology 23(4 Suppl):S60–S77CrossRefPubMedGoogle Scholar
  29. 29.
    Fotiadis D, Jastrzebska B, Philippsen A, Muller DJ, Palczewski K, Engel A (2006) Structure of the rhodopsin dimer: a working model for G-protein-coupled receptors. Curr Opin Struct Biol 16(2):252–259CrossRefPubMedGoogle Scholar
  30. 30.
    Overton MC, Chinault SL, Blumer KJ (2003) Oligomerization, biogenesis, and signaling is promoted by a glycophorin A-like dimerization motif in transmembrane domain 1 of a yeast G protein-coupled receptor. J Biol Chem 278(49):49369–49377CrossRefPubMedGoogle Scholar
  31. 31.
    Lukasiewicz S, Faron-Gorecka A, Dobrucki J, Polit A, Dziedzicka-Wasylewska M (2009) Studies on the role of the receptor protein motifs possibly involved in electrostatic interactions on the dopamine D1 and D2 receptor oligomerization. FEBS J 276(3):760–775CrossRefPubMedGoogle Scholar
  32. 32.
    Lukasiewicz S, Polit A, Kedracka-Krok S, Wedzony K, Mackowiak M, Dziedzicka-Wasylewska M (2010) Hetero-dimerization of serotonin 5-HT(2A) and dopamine D(2) receptors. Biochim Biophys Acta 1803(12):1347–1358CrossRefPubMedGoogle Scholar
  33. 33.
    Shan J, Khelashvili G, Mondal S, Mehler EL, Weinstein H (2012) Ligand-dependent conformations and dynamics of the serotonin 5-HT(2A) receptor determine its activation and membrane-driven oligomerization properties. PLoS Comput Biol 8(4):e1002473CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Vinals X, Moreno E, Lanfumey L, Cordomi A, Pastor A, de La Torre R et al (2015) Cognitive impairment induced by Delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid CB1 and serotonin 5-HT2A receptors. PLoS Biol 13(7):e1002194CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Borroto-Escuela DO, Romero-Fernandez W, Tarakanov AO, Marcellino D, Ciruela F, Agnati LF et al (2010) Dopamine D2 and 5-hydroxytryptamine 5-HT((2)A) receptors assemble into functionally interacting heteromers. Biochem Biophys Res Commun 401(4):605–610CrossRefPubMedGoogle Scholar
  36. 36.
    Lee FJ, Xue S, Pei L, Vukusic B, Chery N, Wang Y et al (2002) Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 111(2):219–230CrossRefPubMedGoogle Scholar
  37. 37.
    Jackson SN, Wang HY, Yergey A, Woods AS (2006) Phosphate stabilization of intermolecular interactions. J Proteome Res 5(1):122–126CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Nimchinsky EA, Hof PR, Janssen WG, Morrison JH, Schmauss C (1997) Expression of dopamine D3 receptor dimers and tetramers in brain and in transfected cells. J Biol Chem 272(46):29229–29237CrossRefPubMedGoogle Scholar
  39. 39.
    Ciruela F, Casado V, Mallol J, Canela EI, Lluis C, Franco R (1995) Immunological identification of A1 adenosine receptors in brain cortex. J Neurosci Res 42(6):818–828CrossRefPubMedGoogle Scholar
  40. 40.
    AbdAlla S, Lother H, Quitterer U (2000) AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature 407(6800):94–98CrossRefPubMedGoogle Scholar
  41. 41.
    AbdAlla S, Lother H, el Massiery A, Quitterer U (2001) Increased AT(1) receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nat Med 7(9):1003–1009CrossRefPubMedGoogle Scholar
  42. 42.
    Yoshioka K, Hosoda R, Kuroda Y, Nakata H (2002) Hetero-oligomerization of adenosine A1 receptors with P2Y1 receptors in rat brains. FEBS Lett 531(2):299–303CrossRefPubMedGoogle Scholar
  43. 43.
    Gama L, Wilt SG, Breitwieser GE (2001) Heterodimerization of calcium sensing receptors with metabotropic glutamate receptors in neurons. J Biol Chem 276(42):39053–39059CrossRefPubMedGoogle Scholar
  44. 44.
    Jaeger WC, Armstrong SP, Hill SJ, Pfleger KD (2014) Biophysical detection of diversity and bias in GPCR function. Front Endocrinol (Lausanne) 5:26Google Scholar
  45. 45.
    Cottet M, Faklaris O, Maurel D, Scholler P, Doumazane E, Trinquet E et al (2012) BRET and Time-resolved FRET strategy to study GPCR oligomerization: from cell lines toward native tissues. Front Endocrinol (Lausanne) 3:92Google Scholar
  46. 46.
    Zhang R, Xie X (2012) Tools for GPCR drug discovery. Acta Pharmacol Sin 33(3):372–384CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Pfleger KD, Eidne KA (2005) Monitoring the formation of dynamic G-protein-coupled receptor-protein complexes in living cells. Biochem J 385(Pt 3):625–637CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Lopez-Gimenez JF, Canals M, Pediani JD, Milligan G (2007) The alpha1b-adrenoceptor exists as a higher-order oligomer: effective oligomerization is required for receptor maturation, surface delivery, and function. Mol Pharmacol 71(4):1015–1029CrossRefPubMedGoogle Scholar
  49. 49.
    Rocheville M, Lange DC, Kumar U, Sasi R, Patel RC, Patel YC (2000) Subtypes of the somatostatin receptor assemble as functional homo- and heterodimers. J Biol Chem 275(11):7862–7869CrossRefPubMedGoogle Scholar
  50. 50.
    Rocheville M, Lange DC, Kumar U, Patel SC, Patel RC, Patel YC (2000) Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 288(5463):154–157CrossRefPubMedGoogle Scholar
  51. 51.
    Ciruela F, Fernandez-Duenas V, Jacobson KA (2015) Lighting up G protein-coupled purinergic receptors with engineered fluorescent ligands. Neuropharmacology 98:58–67CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Madiraju C, Welsh K, Cuddy MP, Godoi PH, Pass I, Ngo T et al (2012) TR-FRET-based high-throughput screening assay for identification of UBC13 inhibitors. J Biomol Screen 17(2):163–176CrossRefPubMedGoogle Scholar
  53. 53.
    Maurel D, Kniazeff J, Mathis G, Trinquet E, Pin JP, Ansanay H (2004) Cell surface detection of membrane protein interaction with homogeneous time-resolved fluorescence resonance energy transfer technology. Anal Biochem 329(2):253–262CrossRefPubMedGoogle Scholar
  54. 54.
    Herrick-Davis K, Weaver BA, Grinde E, Mazurkiewicz JE (2006) Serotonin 5-HT2C receptor homodimer biogenesis in the endoplasmic reticulum: real-time visualization with confocal fluorescence resonance energy transfer. J Biol Chem 281(37):27109–27116CrossRefPubMedGoogle Scholar
  55. 55.
    Ayoub MA, Pfleger KD (2010) Recent advances in bioluminescence resonance energy transfer technologies to study GPCR heteromerization. Curr Opin Pharmacol 10(1):44–52CrossRefPubMedGoogle Scholar
  56. 56.
    Angers S, Salahpour A, Joly E, Hilairet S, Chelsky D, Dennis M et al (2000) Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci U S A 97(7):3684–3689PubMedPubMedCentralGoogle Scholar
  57. 57.
    Albizu L, Cottet M, Kralikova M, Stoev S, Seyer R, Brabet I et al (2010) Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat Chem Biol 6(8):587–594CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Ciruela F, Vilardaga JP, Fernandez-Duenas V (2010) Lighting up multiprotein complexes: lessons from GPCR oligomerization. Trends Biotechnol 28(8):407–415CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Trifilieff P, Rives ML, Urizar E, Piskorowski RA, Vishwasrao HD, Castrillon J et al (2011) Detection of antigen interactions ex vivo by proximity ligation assay: endogenous dopamine D2-adenosine A2A receptor complexes in the striatum. BioTechniques 51(2):111–118PubMedPubMedCentralGoogle Scholar
  60. 60.
    Borroto-Escuela DO, Romero-Fernandez W, Mudo G, Perez-Alea M, Ciruela F, Tarakanov AO et al (2012) Fibroblast growth factor receptor 1- 5-hydroxytryptamine 1A heteroreceptor complexes and their enhancement of hippocampal plasticity. Biol Psychiatry 71(1):84–91CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Sylwia Łukasiewicz
    • 1
  • Ewa Błasiak
    • 1
  • Marta Dziedzicka-Wasylewska
    • 1
    • 2
  1. 1.Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakówPoland
  2. 2.Institute of Pharmacology, Polish Academy of SciencesKrakówPoland

Personalised recommendations