Skip to main content

5-HT2A Receptors in Eating Disorders

  • Chapter
  • First Online:

Part of the book series: The Receptors ((REC,volume 32))

Abstract

Eating disorders consist in anorexia nervosa (lack of energy intake and/or excess of caloric consumption) bulimia nervosa (episodes of binge eating associated with compensatory behaviors, such as self-induced vomiting, misuse of laxative, diuretics, fasting or excessive exercise) and binge eating disorder (recurrent episodes of binge eating without compensatory behavior). The biological mechanisms of these eating disorders have been extensively studied, both in human and animal models, mainly focusing on neuropeptides regulating appetite and on neurotransmitters that may also be involved in mood, appetite and weight, but also impulsivity and rewarding aspects of behavior. Although early preclinical data described a clear role of 5-HT2A receptors in food regulation, the use of specific 5-HT2 ligands did not confirm these first data. Most of the ligands initially used acted actually through 5-HT2C receptors, and, at least at preclinical level, it is now clearly established that these 5-HT2C receptors are those which regulated food intake. The gene coding for 5-HT2A receptor was the very first gene associated with eating disorders, mainly in anorexia nervosa, raising the scientific interest in the serotonin pathway to explain their genetic vulnerability. The A allele of −1438G/A HTR2A polymorphism was reported as being associated to AN and BN, but with many discrepancies, the association being insufficiently strong to survive the performed meta-analyses. This does not mean that the 5-HT2A receptor is having no role in any eating disorder, but that its contribution, if any, might be too small to be detectable when many types of patients are being gathered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Clarke J, Ramoz N, Fladung AK, Gorwood P (2016) Higher reward value of starvation imagery in anorexia nervosa and association with the Val66Met BDNF polymorphism. Transl. Psychiatry 6(6):e829

    CAS  Google Scholar 

  2. Treasure J, Claudino AM, Zucker N (2010) Eating disorders. Lancet 375(9714):583–593. https://doi.org/10.1016/S0140-6736(09)61748-7

    Article  PubMed  Google Scholar 

  3. Gorwood P (2004) Eating disorders, serotonin transporter polymorphisms and potential treatment response. Am J Pharmacogenomics 4(1):9–17

    Article  CAS  PubMed  Google Scholar 

  4. Grahame-Smith DG (1992) Serotonin in affective disorders. Int Clin Psychopharmacol. 6(Suppl 4):5–13

    Article  PubMed  Google Scholar 

  5. Núñez-Navarro A, Agüera Z et al (2012) Do men with eating disorders differ from women in clinics, psychopathology and personality? Eur Eat Disord Rev 20(1):23–31

    Article  PubMed  Google Scholar 

  6. Barr LC, Goodman WK, Price LH, McDougle CJ, Charney DS (1992) The serotonin hypothesis of obsessive compulsive disorder: implications of pharmacologic challenge studies. J Clin Psychiatry. 53(Suppl):17–28

    PubMed  Google Scholar 

  7. Charney DS, Deutch A (1996) A functional neuroanatomy of anxiety and fear: implications for the pathophysiology and treatment of anxiety disorders. Crit Rev Neurobiol. 10(3-4):419–446

    Article  CAS  PubMed  Google Scholar 

  8. Strober M, Freeman R, Lampert C, Diamond J, Kaye W (2000) Controlled family study of anorexia nervosa and bulimia nervosa: evidence of shared liability and transmission of partial syndromes. Am J Psychiatry. 157(3):393–401

    Article  CAS  PubMed  Google Scholar 

  9. Gorwood P, Kipman A, Foulon C (2003) The human genetics of anorexia nervosa. Eur J Pharmacol 480(1–3):163–170

    Article  CAS  PubMed  Google Scholar 

  10. Blundell JE (1984) Serotonin and appetite. Neuropharmacology 23(12B):1537–1551

    Article  CAS  PubMed  Google Scholar 

  11. Leibowitz SF, Shor-Posner G (1986) Brain serotonin and eating behavior. Appetite (7 Suppl):1–14

    Google Scholar 

  12. Kaye WH, Ebert MH, Gwirtsman HE et al (1984) Differences in brain serotonergic metabolism between nonbulimic and bulimic patients with anorexia nervosa. Am J Psychiatry 141(12):1598–1601

    Article  CAS  PubMed  Google Scholar 

  13. Brewerton TD (1995) Toward a unified theory of serotonin dysregulation in eating and related disorders. Psychoneuroendocrinology 20(6):561–590

    Article  CAS  PubMed  Google Scholar 

  14. Jimerson DC, Lesem MD, Kaye WH et al (1990) Eating disorders and depression: is there a serotonin connection? Biol Psychiatry 28(5):443–454

    Article  CAS  PubMed  Google Scholar 

  15. Kaye W, Gendall K, Strober M (1998) Serotonin neuronal function and selective serotonin reuptake inhibitor treatment in anorexia and bulimia nervosa. Biol Psychiatry 44(9):825–838

    Article  CAS  PubMed  Google Scholar 

  16. Kaye WH, Weltzin TE (1991) Serotonin activity in anorexia and bulimia nervosa: relationship to the modulation of feeding and mood. J Clin Psychiatry (52 Suppl):41–48

    Google Scholar 

  17. Kaye WH, Gwirtsman HE, George DT et al (1991) Altered serotonin activity in anorexia nervosa after long-term weight restoration. Does elevated cerebrospinal fluid 5-hydroxyindoleacetic acid level correlate with rigid and obsessive behavior? Arch Gen Psychiatry 48(6):556–562

    Article  CAS  PubMed  Google Scholar 

  18. Steiger H, Young SN, Kin NM (2001) Implications of impulsive and affective symptoms for serotonin function in bulimia nervosa. Psychol Med 31(1):85–95

    Article  CAS  PubMed  Google Scholar 

  19. Smith KA, Fairburn CG, Cowen PJ (1999) Symptomatic relapse in bulimia nervosa following acute tryptophan depletion. Arch Gen Psychiatry 56(2):171–176

    Article  CAS  PubMed  Google Scholar 

  20. Jimerson DC, Lesem MD, Kaye W et al (1992) Low serotonin and dopamine metabolite concentrations in cerebrospinal fluid from bulimic patients with frequent binge episodes. Arch Gen Psychiatry 49(2):132–138

    Article  CAS  PubMed  Google Scholar 

  21. Kaye WH, Gwirtsman HE, George DT et al (1988) CSF 5-HIAA concentrations in anorexia nervosa: reduced values in underweight subjects normalize after weight gain. Biol Psychiatry 23(1):102–105

    Article  CAS  PubMed  Google Scholar 

  22. Kaye WH, Ballenger JC, Lydiard RB et al (1990) CSF monoamine levels in normal-weight bulimia: evidence for abnormal noradrenergic activity. Am J Psychiatry 147(2):225–229

    Article  CAS  PubMed  Google Scholar 

  23. Steiger H, Richardson J, Israel M et al (2005) Reduced density of platelet-binding sites for [3H]paroxetine in remitted bulimic women. Neuropsychopharmacology 30(5):1028–1032

    Article  CAS  PubMed  Google Scholar 

  24. Flament MF, Bissada H, Spettigue W (2012) Evidence-based pharmacotherapy of eating disorders. Int J Neuropsychopharmacol 15(2):189–207

    Article  CAS  PubMed  Google Scholar 

  25. Monteleone P, Tortorella A, Castaldo E, Maj M (2006) Association of a functional serotonin transporter gene polymorphism with binge eating disorder. Am J Med Genet B Neuropsychiatr Genet. 141B(1):7–9

    Article  PubMed  Google Scholar 

  26. Blundell JE (1986) Serotonin manipulations and the structure of feeding behaviour. Appetite (7 Supplement):39–56

    Google Scholar 

  27. Kuikka JT, Tammela L, Karhunen L et al (2001) Reduced serotonin transporter binding in binge eating women. Psychopharmacology 155:310–314

    Article  CAS  PubMed  Google Scholar 

  28. Tammela LI, Rissanen A, Kuikka JT et al (2003) Treatment improves serotonin transporter binding and reduces binge eating. Psychopharmacology 170(1):89–93

    Article  CAS  PubMed  Google Scholar 

  29. Keski-Rahkonen A, Mustelin L (2016) Epidemiology of eating disorders in Europe: prevalence, incidence, comorbidity, course, consequences, and risk factors. Curr Opin Psychiatry 29(6):340–345

    Article  PubMed  Google Scholar 

  30. McElroy SL, Hudson JI, Malhotra S et al (2003) Citalopram in the treatment of binge-eating disorder: a placebo-controlled trial. J Clin Psychiatry 64:807–813

    Article  CAS  PubMed  Google Scholar 

  31. Guerdjikova AI, McElroy SL, Welge JA et al (2009) Lamotrigine in the treatment of binge-eating disorder with obesity: a randomized, placebo-controlled monotherapy trial. Int Clin Psychopharmacol 24:150–158

    Article  PubMed  Google Scholar 

  32. Arnold LM, McElroy SL, Hudson JI et al (2002) A placebo-controlled, randomized trial of fluoxetine in the treatment of binge-eating disorder. J Clin Psychiatry 63:1028–1033

    Article  CAS  PubMed  Google Scholar 

  33. Hudson JI, McElroy SL, Raymond NC et al (1998) Fluvoxamine in the treatment of binge-eating disorder: a multicenter placebo-controlled, double-blind trial. Am J Psychiatr 155:1756–1762

    Article  CAS  PubMed  Google Scholar 

  34. McElroy SL, Casuto LS, Nelson EB et al (2000) Placebo-controlled trial of sertraline in the treatment of binge eating disorder. Am J Psychiatr 157:1004–1006

    Article  CAS  PubMed  Google Scholar 

  35. McElroy SL, Guerdjikova AI, Mori N et al (2012) Pharmacological management of binge eating disorder: current and emerging treatment options. Ther Clin Risk Manag 8:219–241

    Article  PubMed  PubMed Central  Google Scholar 

  36. Frank GK, Kaye WH, Meltzer CC et al (2002) Reduced 5-HT2A receptor binding after recovery from anorexia nervosa. Biol Psychiatry 52(9):896–906

    Article  CAS  PubMed  Google Scholar 

  37. Frank GK, Bailer UF, Henry SE et al (2005) Increased dopamine D2/D3 receptor binding after recovery from anorexia nervosa measured by positron emission tomography and [(11)C]raclopride. Biol Psychiatry 58:908–912

    Article  CAS  PubMed  Google Scholar 

  38. Hen R (1992) Of mice and flies: commonalities among 5-HT receptors. Trends Pharmacol Sci 13:160–165

    Article  CAS  PubMed  Google Scholar 

  39. Blundell JE (1977) Is there a role for serotonin (5-hydroxytryptamine) in feeding? Int J Obes. 1(1):15–42

    CAS  PubMed  Google Scholar 

  40. Tao R, Fray A, Aspley S (2002) Effects on serotonin in rat hypothalamus of D-fenfluramine, aminorex, phentermine and fluoxetine. Eur J Pharmacol 445:69–81

    Article  CAS  PubMed  Google Scholar 

  41. Gibson EL, Kennedy AJ, Curzon G (1993) d-Fenfluramine- and d-norfenfluramine-induced hypophagia: differential mechanisms and involvement of postsynaptic 5-HT receptors. Eur J Pharmacol 242:83–90

    Article  CAS  PubMed  Google Scholar 

  42. Aigner M, Treasure J, Kaye W et al (2011) WFSBP Task Force On Eating Disorders. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for the pharmacological treatment of eating disorders. World J Biol Psychiatry 12(6):400–443

    Google Scholar 

  43. Heisler LK, Kanarek RB, Homoleski B (1999) Reduction of fat and protein intakes but not carbohydrate intake following acute and chronic fluoxetine in female rats. Pharmacol Biochem Behav 63:377–385

    Article  CAS  PubMed  Google Scholar 

  44. Halford JCG, Harrold JA, Boyland EJ et al (2007) Serotonergic drugs: effects on appetite expression and use for the treatment of obesity. Drugs 67:27–55

    Article  CAS  PubMed  Google Scholar 

  45. Hornung JP (2010) The neuronatomy of the serotonergic system. In: Muller CP, Jacobs BL (eds) Handbook of behavioral neuroscience, Handbook of the behavioral neurobiology of serotonin. Elsevier, Oxford, pp 51–64

    Chapter  Google Scholar 

  46. Clark JT, Kalra PS, Crowley WR et al (1984) Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology 115:427–429

    Article  CAS  PubMed  Google Scholar 

  47. Williams G, Bing C, Cai XJ et al (2001) The hypothalamus and the control of energy homeostasis: different circuits, different purposes. Physiol Behav 74(4–5):683–701

    Article  CAS  PubMed  Google Scholar 

  48. Choi S, Blake V, Cole S, Fernstrom JD (2006) Effects of chronic fenfluramine administration on hypothalamic neuropeptide mRNA expression. Brain Res 1087:83–86

    Article  CAS  PubMed  Google Scholar 

  49. Heisler LK, Jobst EE, Sutton GM et al (2006) Serotonin reciprocally regulates melanocortin neurons to modulate food intake. Neuron 51:239–249

    Article  CAS  PubMed  Google Scholar 

  50. Erritzoe D, Frokjaer VG, Haugbol S (2009) Brain serotonin 2A receptor binding: relations to body mass index, tobacco and alcohol use. NeuroImage 46:23–30

    Article  CAS  PubMed  Google Scholar 

  51. Oh CM, Namkung J, Go Y (2015) Regulation of systemic energy homeostasis by serotonin in adipose tissues. Nat Commun 6:6794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kumar JD, Mann JJ (2014) PET tracers for serotonin receptors and their applications. Cent Nerv Syst Agents Med Chem 14:96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Kennett GA, Curzon G (1988) Evidence that mCPP may have behavioural effects mediated by central 5-HT1C receptors. Br J Pharmacol 94:137–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Voigt JP, Fink H (2015) Serotonin controlling feeding and satiety. Behav Brain Res 277:14–31

    Article  CAS  PubMed  Google Scholar 

  55. Erritzoe D, Frokjaer VG, Haahr MT et al (2010) Cerebral serotonin transporter binding is inversely related to body mass index. NeuroImage 52:284–289

    Article  CAS  PubMed  Google Scholar 

  56. Haahr ME, Rasmussen PM, Madsen K (2012) Obesity is associated with high serotonin 4 receptor availability in the brain reward circuitry. NeuroImage 61:884–888

    Article  CAS  PubMed  Google Scholar 

  57. Gauthier C, Hassler C, Mattar L (2014) Symptoms of depression and anxiety in anorexia nervosa: links with plasma tryptophan and serotonin metabolism. Psychoneuroendocrinology 39:170–178

    Article  CAS  PubMed  Google Scholar 

  58. Gauthier C, Hassler C, Mattar L, Launay JM, Callebert J, Steiger H, Melchior JC, Falissard B, Berthoz S, Mourier-Soleillant V, Lang F, Delorme M, Pommereau X, Gerardin P, Bioulac S, Bouvard M, Godart N, EVHAN Group (2014) Symptoms of depression and anxiety in anorexia nervosa: links with plasma tryptophan and serotonin metabolism. Psychoneuroendocrinology. 39:170–178

    Article  CAS  PubMed  Google Scholar 

  59. Bailer UF, Frank GK, Henry SE et al (2007) Exaggerated 5-HT1A but normal 5-HT2A receptor activity in individuals ill with anorexia nervosa. Biol Psychiatry 61:1090–1099

    Article  CAS  PubMed  Google Scholar 

  60. Galusca B, Costes N, Zito NG (2008) Organic background of restrictive-type anorexia nervosa suggested by increased Serotonin1A receptor binding in right Frontotemporal cortex of both lean and recovered patients: [18F]MPPF PET scan study. Biol Psychiatry 64:1009–1013

    Article  CAS  PubMed  Google Scholar 

  61. Kaye WH, Bailer UF, Frank GK et al (2006) Persistent alterations of serotonin and dopamine activity after recovery from anorexia and bulimia nervosa. Proceedings of the 18th World Congress on Psychosomatic Medicine, held in Kobe, Japan, 1287:45–48

    Google Scholar 

  62. Kaye W (2008) Neurobiology of anorexia and bulimia nervosa. Physiol Behav 94(1):121–135. https://doi.org/10.1016/j.physbeh.2007.11.037

    Article  CAS  PubMed  Google Scholar 

  63. Krebs-Thomson K, Geyer MA (1998) Evidence for a functional interaction between 5-HT1A and 5-HT2A receptors in rats. Psychopharmacology 140:69–74

    Article  CAS  PubMed  Google Scholar 

  64. Cloninger CR, Przybeck TR, Svrakic DM et al (1994) The temperament and character inventory (TCI): a guide to its development and use. Center for Psychobiology of Personality, Washington University, St. Louis, MO, pp 19–28

    Google Scholar 

  65. Clarke TK, Weiss ARD, Berrettini WH (2012) The genetics of anorexia nervosa. Clin Pharmacol Ther 91:181–188

    Article  CAS  PubMed  Google Scholar 

  66. Hinney A, Scherag S, Hebebrand J (2010) Genetic findings in anorexia and bulimia nervosa. Prog Mol Biol Transl Sci 94:241–270

    Article  CAS  PubMed  Google Scholar 

  67. Clifton PG, Barnfield AM, Curzon G (1993) Effects of food deprivation and mCPP treatment on the microstructure of ingestive behaviour of male and female rats. J Psychopharmacol 7(3):257–264

    Article  CAS  PubMed  Google Scholar 

  68. Maurel S, De Vry J, De Beun R et al (1999) 5-HT2A and 5-HT2C/5-HT1B receptors are differentially involved in alcohol preference and consummatory behavior in cAA rats. Pharmacol Biochem Behav 62(1):89–96

    Article  CAS  PubMed  Google Scholar 

  69. Aulakh CS, Hill JL, Yoney HT et al (1992) Evidence for involvement of 5-HT1C and 5-HT2 receptors in the food intake suppressant effects of 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI). Psychopharmacology 109(4):444–448

    Article  CAS  PubMed  Google Scholar 

  70. Meltzer HY (2002) Action of atypical antipsychotics. Am J Psychiatry 159(1):153–154

    Article  PubMed  Google Scholar 

  71. Murotani T, Ishizuka T, Isogawa Y et al (2011) Possible involvement of serotonin 5-HT2 receptor in the regulation of feeding behavior through the histaminergic system. Neuropharmacology 61:228–233

    Article  CAS  PubMed  Google Scholar 

  72. Kaur G, Kulkarni SK (2002) Studies on modulation of feeding behavior by atypical antipsychotics in female mice. Prog Neuro-Psychopharmacol Biol Psychiatry 26:277–285

    Article  CAS  Google Scholar 

  73. Méquinion M, Chauveau C, Viltart O (2015a) The use of animal models to decipher physiological and neurobiological alterations of anorexia nervosa patients. Front Endocrinol (Lausanne) 6:68

    Google Scholar 

  74. van Gestel MA, Kostrzewa E, Adan RAH (2014) Pharmacological manipulations in animal models of anorexia and binge eating in relation to humans: pharmacological interventions for eating disorders. Br J Pharmacol 171:4767–4784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Siegfried Z, Berry EM, Hao S (2003) Animal models in the investigation of anorexia. Physiol Behav 79:39–45

    Article  CAS  PubMed  Google Scholar 

  76. Zgheib S, Méquinion M, Lucas S (2014) Long-term physiological alterations and recovery in a mouse model of separation associated with time-restricted feeding: a tool to study anorexia nervosa related consequences. PLoS One 9:e103775

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Willner P (2005) Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 52(2):90–110

    Article  CAS  PubMed  Google Scholar 

  78. Scheurink AJW, Boersma GJ, Nergårdh R et al (2010) Neurobiology of hyperactivity and reward: agreeable restlessness in anorexia nervosa. Physiol Behav 100:490–495

    Article  CAS  PubMed  Google Scholar 

  79. Méquinion M, Caron E, Zgheib S (2015b) Physical activity: benefit or weakness in metabolic adaptations in a mouse model of chronic food restriction? Am J Physiol Endocrinol Metab 308:E241–E255

    Article  PubMed  CAS  Google Scholar 

  80. Avraham Y, Hao S, Mendelson S et al (2001) Tyrosine improves appetite, cognition, and exercise tolerance in activity anorexia. Med Sci Sports Exerc 33(12):2104–2110

    Article  CAS  PubMed  Google Scholar 

  81. Verhagen LAW, Luijendijk MCM, Korte-Bouws GAH (2009) Dopamine and serotonin release in the nucleus accumbens during starvation-induced hyperactivity. Eur Neuropsychopharmacol 19:309–316

    Article  CAS  PubMed  Google Scholar 

  82. Hillebrand JJG, Heinsbroek ACM, Kas MJH (2006) The appetite suppressant d-fenfluramine reduces water intake, but not food intake, in activity-based anorexia. J Mol Endocrinol 36:153–162

    Article  CAS  PubMed  Google Scholar 

  83. Nonogaki K, Nozue K, Oka Y (2006a) Hyperphagia alters expression of hypothalamic 5-HT2C and 5-HT1B receptor genes and plasma des-acyl ghrelin levels in Ay mice. Endocrinology 147:5893–5900

    Article  CAS  PubMed  Google Scholar 

  84. Nonogaki K, Nozue K, Oka Y (2006b) Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese Ay mice. Biochem Biophys Res Commun 351:1078–1082

    Article  CAS  PubMed  Google Scholar 

  85. Compan V, Zhou M, Grailhe R (2004) Attenuated response to stress and novelty and hypersensitivity to seizures in 5-HT4 receptor knock-out mice. J Neurosci 24:412–419

    Article  CAS  PubMed  Google Scholar 

  86. Jean A, Conductier G, Manrique C (2007) Anorexia induced by activation of serotonin 5-HT4 receptors is mediated by increases in CART in the nucleus accumbens. Proc Natl Acad Sci U S A 104:16335–16340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Butt I, Hong A, Di J et al (2014) The effects of serotonin1A receptor on female mice body weight and food intake are associated with the differential expression of hypothalamic neuropeptides and the GABAA receptor. Neuropeptides 48:313–318

    Article  CAS  PubMed  Google Scholar 

  88. Jean A, Laurent L, Bockaert J (2012) The nucleus accumbens 5-HTR4-CART pathway ties anorexia to hyperactivity. Transl Psychiatry 2:e203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Weisstaub NV, Zhou M, Lira A (2006) Cortical 5-HT2A receptor signaling modulates anxiety-like behaviors in mice. Science 313:536–540

    Article  CAS  PubMed  Google Scholar 

  90. Tecott LH, Sun LM, Akana SF (1995) Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature 374:542–546

    Article  CAS  PubMed  Google Scholar 

  91. Martin CB, Martin VS, Trigo JM et al (2014) 5-HT2C receptor desensitization moderates anxiety in 5-HTT deficient mice: from behavioral to cellular evidence. Int J Neuropsychopharmacol 31:18(3)

    Google Scholar 

  92. Maltais LJ, Lane PW, Beamer WG (1984) Anorexia, a recessive mutation causing starvation in preweanling mice. J Hered 75:468–472

    Article  CAS  PubMed  Google Scholar 

  93. Nilsson IAK, Lindfors C, Schalling M et al (2013) Anorexia and Hypothalamic Degeneration. In: Vitamins & Hormones. Elsevier, pp. 27–60

    Google Scholar 

  94. Ramoz N, Versini A, Gorwood P (2007) Eating disorders: an overview of treatment responses and the potential impact of vulnerability genes and endophenotypes. Expert Opin Pharmacother 8:2029–2044

    Article  CAS  PubMed  Google Scholar 

  95. Collier DA, Arranz MJ, Li T et al (1997) Association between 5-HT2A gene promoter polymorphism and anorexia nervosa. Lancet 350:412

    Article  CAS  PubMed  Google Scholar 

  96. Sorbi S, Nacmias B, Tedde A et al (1998) 5-HT2A promoter polymorphism in anorexia nervosa. Lancet 351:1785

    Article  CAS  PubMed  Google Scholar 

  97. Enoch MA, Kaye WH, Rotondo A et al (1998) 5-HT2A promoter polymorphism -1438G/A, anorexia nervosa, and obsessive-compulsive disorder. Lancet 351:1785–1786

    Article  CAS  PubMed  Google Scholar 

  98. Hinney A, Ziegler A, Nöthen MM et al (1997) 5-HT2A receptor gene polymorphisms, anorexia nervosa, and obesity. Lancet 350:1324–1325

    Article  CAS  PubMed  Google Scholar 

  99. Campbell DA, Sundaramurthy D, Markham AF et al (1998) Lack of association between 5-HT2A gene promoter polymorphism and susceptibility to anorexia nervosa. Lancet 351:499

    Article  CAS  PubMed  Google Scholar 

  100. Ziegler A, Hebebrand J, Görg T et al (1999) Further lack of association between the 5-HT2A gene promoter polymorphism and susceptibility to eating disorders and a meta-analysis pertaining to anorexia nervosa. Mol Psychiatry 4:410–412

    Article  CAS  PubMed  Google Scholar 

  101. Nishiguchi N, Matsushita S, Suzuki K et al (2001) Association between 5HT2A receptor gene promoter region polymorphism and eating disorders in Japanese patients. Biol Psychiatry 50:123–128

    Article  CAS  PubMed  Google Scholar 

  102. Ando T, Komaki G, Karibe M et al (2001) 5-HT2A promoter polymorphism is not associated with anorexia nervosa in Japanese patients. Psychiatr Genet 11:157–1160

    Article  CAS  PubMed  Google Scholar 

  103. Kipman A, Bruins-Slot L, Boni C et al (2002) 5-HT(2A) gene promoter polymorphism as a modifying rather than a vulnerability factor in anorexia nervosa. Eur Psychiatry 17:227–229

    Article  CAS  PubMed  Google Scholar 

  104. Ricca V, Nacmias B, Cellini E et al (2002) 5-HT2A receptor gene polymorphism and eating disorders. Neurosci Lett 323:105–108

    Article  CAS  PubMed  Google Scholar 

  105. Fuentes JA, Lauzurica N, Hurtado A et al (2004) Analysis of the -1438 G/A polymorphism of the 5-HT2A serotonin receptor gene in bulimia nervosa patients with or without a history of anorexia nervosa. Psychiatr Genet 14:107–109

    Article  CAS  PubMed  Google Scholar 

  106. Martásková D, Slachtová L, Kemlink D et al (2009) Polymorphisms in serotonin-related genes in anorexia nervosa. The first study in Czech population and metaanalyses with previously performed studies. Folia Biol (Praha) 55:192–197

    Google Scholar 

  107. Rybakowski F, Slopien A, Dmitrzak-Weglarz M et al (2006) The 5-HT2A -1438 A/G and 5-HTTLPR polymorphisms and personality dimensions in adolescent anorexia nervosa: association study. Neuropsychobiology 53:33–39

    Article  CAS  PubMed  Google Scholar 

  108. Gorwood P, Adès J, Bellodi L et al (2002) The 5-HT(2A) -1438G/A polymorphism in anorexia nervosa: a combined analysis of 316 trios from six European centres. Mol Psychiatry 7:90–94

    Article  CAS  PubMed  Google Scholar 

  109. Nacmias B, Ricca V, Tedde A et al (1999) 5-HT2A receptor gene polymorphisms in anorexia nervosa and bulimia nervosa. Neurosci Lett 277:134–136

    Article  CAS  PubMed  Google Scholar 

  110. Pinheiro AP, Bulik CM, Thornton LM et al (2010) Association study of 182 candidate genes in anorexia nervosa. Am J Med Genet B Neuropsychiatr Genet 153B:1070–1080

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang K, Zhang H, Bloss CS et al (2011) A genome-wide association study on common SNPs and rare CNVs in anorexia nervosa. Mol Psychiatry 16:949–959

    Article  CAS  PubMed  Google Scholar 

  112. Boraska V, Franklin CS, Floyd JA et al (2014) A genome-wide association study of anorexia nervosa. Mol Psychiatry 19(10):1085–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Herbeth B, Aubry E, Fumeron F et al (2005) Polymorphism of the 5-HT2A receptor gene and food intakes in children and adolescents: the Stanislas Family Study. Am J Clin Nutr 82:467–470

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Gorwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gorwood, P., Lanfumey, L., Viltart, O., Ramoz, N. (2018). 5-HT2A Receptors in Eating Disorders. In: Guiard, B., Di Giovanni, G. (eds) 5-HT2A Receptors in the Central Nervous System. The Receptors, vol 32. Humana Press, Cham. https://doi.org/10.1007/978-3-319-70474-6_15

Download citation

Publish with us

Policies and ethics