Advertisement

5-HT2A Receptors in Eating Disorders

  • Philip Gorwood
  • Laurence Lanfumey
  • Odile Viltart
  • Nicolas Ramoz
Chapter
Part of the The Receptors book series (REC, volume 32)

Abstract

Eating disorders consist in anorexia nervosa (lack of energy intake and/or excess of caloric consumption) bulimia nervosa (episodes of binge eating associated with compensatory behaviors, such as self-induced vomiting, misuse of laxative, diuretics, fasting or excessive exercise) and binge eating disorder (recurrent episodes of binge eating without compensatory behavior). The biological mechanisms of these eating disorders have been extensively studied, both in human and animal models, mainly focusing on neuropeptides regulating appetite and on neurotransmitters that may also be involved in mood, appetite and weight, but also impulsivity and rewarding aspects of behavior. Although early preclinical data described a clear role of 5-HT2A receptors in food regulation, the use of specific 5-HT2 ligands did not confirm these first data. Most of the ligands initially used acted actually through 5-HT2C receptors, and, at least at preclinical level, it is now clearly established that these 5-HT2C receptors are those which regulated food intake. The gene coding for 5-HT2A receptor was the very first gene associated with eating disorders, mainly in anorexia nervosa, raising the scientific interest in the serotonin pathway to explain their genetic vulnerability. The A allele of −1438G/A HTR2A polymorphism was reported as being associated to AN and BN, but with many discrepancies, the association being insufficiently strong to survive the performed meta-analyses. This does not mean that the 5-HT2A receptor is having no role in any eating disorder, but that its contribution, if any, might be too small to be detectable when many types of patients are being gathered.

Keywords

Anorexia nervosa Bulimia nervosa Binge eating disorder Appetite Weight Food Genetics 

References

  1. 1.
    Clarke J, Ramoz N, Fladung AK, Gorwood P (2016) Higher reward value of starvation imagery in anorexia nervosa and association with the Val66Met BDNF polymorphism. Transl. Psychiatry 6(6):e829Google Scholar
  2. 2.
    Treasure J, Claudino AM, Zucker N (2010) Eating disorders. Lancet 375(9714):583–593.  https://doi.org/10.1016/S0140-6736(09)61748-7 PubMedCrossRefGoogle Scholar
  3. 3.
    Gorwood P (2004) Eating disorders, serotonin transporter polymorphisms and potential treatment response. Am J Pharmacogenomics 4(1):9–17PubMedCrossRefGoogle Scholar
  4. 4.
    Grahame-Smith DG (1992) Serotonin in affective disorders. Int Clin Psychopharmacol. 6(Suppl 4):5–13PubMedCrossRefGoogle Scholar
  5. 5.
    Núñez-Navarro A, Agüera Z et al (2012) Do men with eating disorders differ from women in clinics, psychopathology and personality? Eur Eat Disord Rev 20(1):23–31PubMedCrossRefGoogle Scholar
  6. 6.
    Barr LC, Goodman WK, Price LH, McDougle CJ, Charney DS (1992) The serotonin hypothesis of obsessive compulsive disorder: implications of pharmacologic challenge studies. J Clin Psychiatry. 53(Suppl):17–28PubMedGoogle Scholar
  7. 7.
    Charney DS, Deutch A (1996) A functional neuroanatomy of anxiety and fear: implications for the pathophysiology and treatment of anxiety disorders. Crit Rev Neurobiol. 10(3-4):419–446PubMedCrossRefGoogle Scholar
  8. 8.
    Strober M, Freeman R, Lampert C, Diamond J, Kaye W (2000) Controlled family study of anorexia nervosa and bulimia nervosa: evidence of shared liability and transmission of partial syndromes. Am J Psychiatry. 157(3):393–401PubMedCrossRefGoogle Scholar
  9. 9.
    Gorwood P, Kipman A, Foulon C (2003) The human genetics of anorexia nervosa. Eur J Pharmacol 480(1–3):163–170PubMedCrossRefGoogle Scholar
  10. 10.
    Blundell JE (1984) Serotonin and appetite. Neuropharmacology 23(12B):1537–1551PubMedCrossRefGoogle Scholar
  11. 11.
    Leibowitz SF, Shor-Posner G (1986) Brain serotonin and eating behavior. Appetite (7 Suppl):1–14Google Scholar
  12. 12.
    Kaye WH, Ebert MH, Gwirtsman HE et al (1984) Differences in brain serotonergic metabolism between nonbulimic and bulimic patients with anorexia nervosa. Am J Psychiatry 141(12):1598–1601PubMedCrossRefGoogle Scholar
  13. 13.
    Brewerton TD (1995) Toward a unified theory of serotonin dysregulation in eating and related disorders. Psychoneuroendocrinology 20(6):561–590PubMedCrossRefGoogle Scholar
  14. 14.
    Jimerson DC, Lesem MD, Kaye WH et al (1990) Eating disorders and depression: is there a serotonin connection? Biol Psychiatry 28(5):443–454PubMedCrossRefGoogle Scholar
  15. 15.
    Kaye W, Gendall K, Strober M (1998) Serotonin neuronal function and selective serotonin reuptake inhibitor treatment in anorexia and bulimia nervosa. Biol Psychiatry 44(9):825–838PubMedCrossRefGoogle Scholar
  16. 16.
    Kaye WH, Weltzin TE (1991) Serotonin activity in anorexia and bulimia nervosa: relationship to the modulation of feeding and mood. J Clin Psychiatry (52 Suppl):41–48Google Scholar
  17. 17.
    Kaye WH, Gwirtsman HE, George DT et al (1991) Altered serotonin activity in anorexia nervosa after long-term weight restoration. Does elevated cerebrospinal fluid 5-hydroxyindoleacetic acid level correlate with rigid and obsessive behavior? Arch Gen Psychiatry 48(6):556–562PubMedCrossRefGoogle Scholar
  18. 18.
    Steiger H, Young SN, Kin NM (2001) Implications of impulsive and affective symptoms for serotonin function in bulimia nervosa. Psychol Med 31(1):85–95PubMedCrossRefGoogle Scholar
  19. 19.
    Smith KA, Fairburn CG, Cowen PJ (1999) Symptomatic relapse in bulimia nervosa following acute tryptophan depletion. Arch Gen Psychiatry 56(2):171–176PubMedCrossRefGoogle Scholar
  20. 20.
    Jimerson DC, Lesem MD, Kaye W et al (1992) Low serotonin and dopamine metabolite concentrations in cerebrospinal fluid from bulimic patients with frequent binge episodes. Arch Gen Psychiatry 49(2):132–138PubMedCrossRefGoogle Scholar
  21. 21.
    Kaye WH, Gwirtsman HE, George DT et al (1988) CSF 5-HIAA concentrations in anorexia nervosa: reduced values in underweight subjects normalize after weight gain. Biol Psychiatry 23(1):102–105PubMedCrossRefGoogle Scholar
  22. 22.
    Kaye WH, Ballenger JC, Lydiard RB et al (1990) CSF monoamine levels in normal-weight bulimia: evidence for abnormal noradrenergic activity. Am J Psychiatry 147(2):225–229PubMedCrossRefGoogle Scholar
  23. 23.
    Steiger H, Richardson J, Israel M et al (2005) Reduced density of platelet-binding sites for [3H]paroxetine in remitted bulimic women. Neuropsychopharmacology 30(5):1028–1032PubMedCrossRefGoogle Scholar
  24. 24.
    Flament MF, Bissada H, Spettigue W (2012) Evidence-based pharmacotherapy of eating disorders. Int J Neuropsychopharmacol 15(2):189–207PubMedCrossRefGoogle Scholar
  25. 25.
    Monteleone P, Tortorella A, Castaldo E, Maj M (2006) Association of a functional serotonin transporter gene polymorphism with binge eating disorder. Am J Med Genet B Neuropsychiatr Genet. 141B(1):7–9PubMedCrossRefGoogle Scholar
  26. 26.
    Blundell JE (1986) Serotonin manipulations and the structure of feeding behaviour. Appetite (7 Supplement):39–56Google Scholar
  27. 27.
    Kuikka JT, Tammela L, Karhunen L et al (2001) Reduced serotonin transporter binding in binge eating women. Psychopharmacology 155:310–314PubMedCrossRefGoogle Scholar
  28. 28.
    Tammela LI, Rissanen A, Kuikka JT et al (2003) Treatment improves serotonin transporter binding and reduces binge eating. Psychopharmacology 170(1):89–93PubMedCrossRefGoogle Scholar
  29. 29.
    Keski-Rahkonen A, Mustelin L (2016) Epidemiology of eating disorders in Europe: prevalence, incidence, comorbidity, course, consequences, and risk factors. Curr Opin Psychiatry 29(6):340–345PubMedCrossRefGoogle Scholar
  30. 30.
    McElroy SL, Hudson JI, Malhotra S et al (2003) Citalopram in the treatment of binge-eating disorder: a placebo-controlled trial. J Clin Psychiatry 64:807–813PubMedCrossRefGoogle Scholar
  31. 31.
    Guerdjikova AI, McElroy SL, Welge JA et al (2009) Lamotrigine in the treatment of binge-eating disorder with obesity: a randomized, placebo-controlled monotherapy trial. Int Clin Psychopharmacol 24:150–158PubMedCrossRefGoogle Scholar
  32. 32.
    Arnold LM, McElroy SL, Hudson JI et al (2002) A placebo-controlled, randomized trial of fluoxetine in the treatment of binge-eating disorder. J Clin Psychiatry 63:1028–1033PubMedCrossRefGoogle Scholar
  33. 33.
    Hudson JI, McElroy SL, Raymond NC et al (1998) Fluvoxamine in the treatment of binge-eating disorder: a multicenter placebo-controlled, double-blind trial. Am J Psychiatr 155:1756–1762PubMedCrossRefGoogle Scholar
  34. 34.
    McElroy SL, Casuto LS, Nelson EB et al (2000) Placebo-controlled trial of sertraline in the treatment of binge eating disorder. Am J Psychiatr 157:1004–1006PubMedCrossRefGoogle Scholar
  35. 35.
    McElroy SL, Guerdjikova AI, Mori N et al (2012) Pharmacological management of binge eating disorder: current and emerging treatment options. Ther Clin Risk Manag 8:219–241PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Frank GK, Kaye WH, Meltzer CC et al (2002) Reduced 5-HT2A receptor binding after recovery from anorexia nervosa. Biol Psychiatry 52(9):896–906PubMedCrossRefGoogle Scholar
  37. 37.
    Frank GK, Bailer UF, Henry SE et al (2005) Increased dopamine D2/D3 receptor binding after recovery from anorexia nervosa measured by positron emission tomography and [(11)C]raclopride. Biol Psychiatry 58:908–912PubMedCrossRefGoogle Scholar
  38. 38.
    Hen R (1992) Of mice and flies: commonalities among 5-HT receptors. Trends Pharmacol Sci 13:160–165PubMedCrossRefGoogle Scholar
  39. 39.
    Blundell JE (1977) Is there a role for serotonin (5-hydroxytryptamine) in feeding? Int J Obes. 1(1):15–42PubMedGoogle Scholar
  40. 40.
    Tao R, Fray A, Aspley S (2002) Effects on serotonin in rat hypothalamus of D-fenfluramine, aminorex, phentermine and fluoxetine. Eur J Pharmacol 445:69–81PubMedCrossRefGoogle Scholar
  41. 41.
    Gibson EL, Kennedy AJ, Curzon G (1993) d-Fenfluramine- and d-norfenfluramine-induced hypophagia: differential mechanisms and involvement of postsynaptic 5-HT receptors. Eur J Pharmacol 242:83–90PubMedCrossRefGoogle Scholar
  42. 42.
    Aigner M, Treasure J, Kaye W et al (2011) WFSBP Task Force On Eating Disorders. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines for the pharmacological treatment of eating disorders. World J Biol Psychiatry 12(6):400–443Google Scholar
  43. 43.
    Heisler LK, Kanarek RB, Homoleski B (1999) Reduction of fat and protein intakes but not carbohydrate intake following acute and chronic fluoxetine in female rats. Pharmacol Biochem Behav 63:377–385PubMedCrossRefGoogle Scholar
  44. 44.
    Halford JCG, Harrold JA, Boyland EJ et al (2007) Serotonergic drugs: effects on appetite expression and use for the treatment of obesity. Drugs 67:27–55PubMedCrossRefGoogle Scholar
  45. 45.
    Hornung JP (2010) The neuronatomy of the serotonergic system. In: Muller CP, Jacobs BL (eds) Handbook of behavioral neuroscience, Handbook of the behavioral neurobiology of serotonin. Elsevier, Oxford, pp 51–64CrossRefGoogle Scholar
  46. 46.
    Clark JT, Kalra PS, Crowley WR et al (1984) Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology 115:427–429PubMedCrossRefGoogle Scholar
  47. 47.
    Williams G, Bing C, Cai XJ et al (2001) The hypothalamus and the control of energy homeostasis: different circuits, different purposes. Physiol Behav 74(4–5):683–701PubMedCrossRefGoogle Scholar
  48. 48.
    Choi S, Blake V, Cole S, Fernstrom JD (2006) Effects of chronic fenfluramine administration on hypothalamic neuropeptide mRNA expression. Brain Res 1087:83–86PubMedCrossRefGoogle Scholar
  49. 49.
    Heisler LK, Jobst EE, Sutton GM et al (2006) Serotonin reciprocally regulates melanocortin neurons to modulate food intake. Neuron 51:239–249PubMedCrossRefGoogle Scholar
  50. 50.
    Erritzoe D, Frokjaer VG, Haugbol S (2009) Brain serotonin 2A receptor binding: relations to body mass index, tobacco and alcohol use. NeuroImage 46:23–30PubMedCrossRefGoogle Scholar
  51. 51.
    Oh CM, Namkung J, Go Y (2015) Regulation of systemic energy homeostasis by serotonin in adipose tissues. Nat Commun 6:6794PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Kumar JD, Mann JJ (2014) PET tracers for serotonin receptors and their applications. Cent Nerv Syst Agents Med Chem 14:96PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Kennett GA, Curzon G (1988) Evidence that mCPP may have behavioural effects mediated by central 5-HT1C receptors. Br J Pharmacol 94:137–147PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Voigt JP, Fink H (2015) Serotonin controlling feeding and satiety. Behav Brain Res 277:14–31PubMedCrossRefGoogle Scholar
  55. 55.
    Erritzoe D, Frokjaer VG, Haahr MT et al (2010) Cerebral serotonin transporter binding is inversely related to body mass index. NeuroImage 52:284–289PubMedCrossRefGoogle Scholar
  56. 56.
    Haahr ME, Rasmussen PM, Madsen K (2012) Obesity is associated with high serotonin 4 receptor availability in the brain reward circuitry. NeuroImage 61:884–888PubMedCrossRefGoogle Scholar
  57. 57.
    Gauthier C, Hassler C, Mattar L (2014) Symptoms of depression and anxiety in anorexia nervosa: links with plasma tryptophan and serotonin metabolism. Psychoneuroendocrinology 39:170–178PubMedCrossRefGoogle Scholar
  58. 58.
    Gauthier C, Hassler C, Mattar L, Launay JM, Callebert J, Steiger H, Melchior JC, Falissard B, Berthoz S, Mourier-Soleillant V, Lang F, Delorme M, Pommereau X, Gerardin P, Bioulac S, Bouvard M, Godart N, EVHAN Group (2014) Symptoms of depression and anxiety in anorexia nervosa: links with plasma tryptophan and serotonin metabolism. Psychoneuroendocrinology. 39:170–178PubMedCrossRefGoogle Scholar
  59. 59.
    Bailer UF, Frank GK, Henry SE et al (2007) Exaggerated 5-HT1A but normal 5-HT2A receptor activity in individuals ill with anorexia nervosa. Biol Psychiatry 61:1090–1099PubMedCrossRefGoogle Scholar
  60. 60.
    Galusca B, Costes N, Zito NG (2008) Organic background of restrictive-type anorexia nervosa suggested by increased Serotonin1A receptor binding in right Frontotemporal cortex of both lean and recovered patients: [18F]MPPF PET scan study. Biol Psychiatry 64:1009–1013PubMedCrossRefGoogle Scholar
  61. 61.
    Kaye WH, Bailer UF, Frank GK et al (2006) Persistent alterations of serotonin and dopamine activity after recovery from anorexia and bulimia nervosa. Proceedings of the 18th World Congress on Psychosomatic Medicine, held in Kobe, Japan, 1287:45–48Google Scholar
  62. 62.
    Kaye W (2008) Neurobiology of anorexia and bulimia nervosa. Physiol Behav 94(1):121–135.  https://doi.org/10.1016/j.physbeh.2007.11.037 PubMedCrossRefGoogle Scholar
  63. 63.
    Krebs-Thomson K, Geyer MA (1998) Evidence for a functional interaction between 5-HT1A and 5-HT2A receptors in rats. Psychopharmacology 140:69–74PubMedCrossRefGoogle Scholar
  64. 64.
    Cloninger CR, Przybeck TR, Svrakic DM et al (1994) The temperament and character inventory (TCI): a guide to its development and use. Center for Psychobiology of Personality, Washington University, St. Louis, MO, pp 19–28Google Scholar
  65. 65.
    Clarke TK, Weiss ARD, Berrettini WH (2012) The genetics of anorexia nervosa. Clin Pharmacol Ther 91:181–188PubMedCrossRefGoogle Scholar
  66. 66.
    Hinney A, Scherag S, Hebebrand J (2010) Genetic findings in anorexia and bulimia nervosa. Prog Mol Biol Transl Sci 94:241–270PubMedCrossRefGoogle Scholar
  67. 67.
    Clifton PG, Barnfield AM, Curzon G (1993) Effects of food deprivation and mCPP treatment on the microstructure of ingestive behaviour of male and female rats. J Psychopharmacol 7(3):257–264PubMedCrossRefGoogle Scholar
  68. 68.
    Maurel S, De Vry J, De Beun R et al (1999) 5-HT2A and 5-HT2C/5-HT1B receptors are differentially involved in alcohol preference and consummatory behavior in cAA rats. Pharmacol Biochem Behav 62(1):89–96PubMedCrossRefGoogle Scholar
  69. 69.
    Aulakh CS, Hill JL, Yoney HT et al (1992) Evidence for involvement of 5-HT1C and 5-HT2 receptors in the food intake suppressant effects of 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI). Psychopharmacology 109(4):444–448PubMedCrossRefGoogle Scholar
  70. 70.
    Meltzer HY (2002) Action of atypical antipsychotics. Am J Psychiatry 159(1):153–154PubMedCrossRefGoogle Scholar
  71. 71.
    Murotani T, Ishizuka T, Isogawa Y et al (2011) Possible involvement of serotonin 5-HT2 receptor in the regulation of feeding behavior through the histaminergic system. Neuropharmacology 61:228–233PubMedCrossRefGoogle Scholar
  72. 72.
    Kaur G, Kulkarni SK (2002) Studies on modulation of feeding behavior by atypical antipsychotics in female mice. Prog Neuro-Psychopharmacol Biol Psychiatry 26:277–285CrossRefGoogle Scholar
  73. 73.
    Méquinion M, Chauveau C, Viltart O (2015a) The use of animal models to decipher physiological and neurobiological alterations of anorexia nervosa patients. Front Endocrinol (Lausanne) 6:68Google Scholar
  74. 74.
    van Gestel MA, Kostrzewa E, Adan RAH (2014) Pharmacological manipulations in animal models of anorexia and binge eating in relation to humans: pharmacological interventions for eating disorders. Br J Pharmacol 171:4767–4784PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Siegfried Z, Berry EM, Hao S (2003) Animal models in the investigation of anorexia. Physiol Behav 79:39–45PubMedCrossRefGoogle Scholar
  76. 76.
    Zgheib S, Méquinion M, Lucas S (2014) Long-term physiological alterations and recovery in a mouse model of separation associated with time-restricted feeding: a tool to study anorexia nervosa related consequences. PLoS One 9:e103775PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Willner P (2005) Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 52(2):90–110PubMedCrossRefGoogle Scholar
  78. 78.
    Scheurink AJW, Boersma GJ, Nergårdh R et al (2010) Neurobiology of hyperactivity and reward: agreeable restlessness in anorexia nervosa. Physiol Behav 100:490–495PubMedCrossRefGoogle Scholar
  79. 79.
    Méquinion M, Caron E, Zgheib S (2015b) Physical activity: benefit or weakness in metabolic adaptations in a mouse model of chronic food restriction? Am J Physiol Endocrinol Metab 308:E241–E255PubMedCrossRefGoogle Scholar
  80. 80.
    Avraham Y, Hao S, Mendelson S et al (2001) Tyrosine improves appetite, cognition, and exercise tolerance in activity anorexia. Med Sci Sports Exerc 33(12):2104–2110PubMedCrossRefGoogle Scholar
  81. 81.
    Verhagen LAW, Luijendijk MCM, Korte-Bouws GAH (2009) Dopamine and serotonin release in the nucleus accumbens during starvation-induced hyperactivity. Eur Neuropsychopharmacol 19:309–316PubMedCrossRefGoogle Scholar
  82. 82.
    Hillebrand JJG, Heinsbroek ACM, Kas MJH (2006) The appetite suppressant d-fenfluramine reduces water intake, but not food intake, in activity-based anorexia. J Mol Endocrinol 36:153–162PubMedCrossRefGoogle Scholar
  83. 83.
    Nonogaki K, Nozue K, Oka Y (2006a) Hyperphagia alters expression of hypothalamic 5-HT2C and 5-HT1B receptor genes and plasma des-acyl ghrelin levels in Ay mice. Endocrinology 147:5893–5900PubMedCrossRefGoogle Scholar
  84. 84.
    Nonogaki K, Nozue K, Oka Y (2006b) Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese Ay mice. Biochem Biophys Res Commun 351:1078–1082PubMedCrossRefGoogle Scholar
  85. 85.
    Compan V, Zhou M, Grailhe R (2004) Attenuated response to stress and novelty and hypersensitivity to seizures in 5-HT4 receptor knock-out mice. J Neurosci 24:412–419PubMedCrossRefGoogle Scholar
  86. 86.
    Jean A, Conductier G, Manrique C (2007) Anorexia induced by activation of serotonin 5-HT4 receptors is mediated by increases in CART in the nucleus accumbens. Proc Natl Acad Sci U S A 104:16335–16340PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Butt I, Hong A, Di J et al (2014) The effects of serotonin1A receptor on female mice body weight and food intake are associated with the differential expression of hypothalamic neuropeptides and the GABAA receptor. Neuropeptides 48:313–318PubMedCrossRefGoogle Scholar
  88. 88.
    Jean A, Laurent L, Bockaert J (2012) The nucleus accumbens 5-HTR4-CART pathway ties anorexia to hyperactivity. Transl Psychiatry 2:e203PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Weisstaub NV, Zhou M, Lira A (2006) Cortical 5-HT2A receptor signaling modulates anxiety-like behaviors in mice. Science 313:536–540PubMedCrossRefGoogle Scholar
  90. 90.
    Tecott LH, Sun LM, Akana SF (1995) Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature 374:542–546PubMedCrossRefGoogle Scholar
  91. 91.
    Martin CB, Martin VS, Trigo JM et al (2014) 5-HT2C receptor desensitization moderates anxiety in 5-HTT deficient mice: from behavioral to cellular evidence. Int J Neuropsychopharmacol 31:18(3)Google Scholar
  92. 92.
    Maltais LJ, Lane PW, Beamer WG (1984) Anorexia, a recessive mutation causing starvation in preweanling mice. J Hered 75:468–472PubMedCrossRefGoogle Scholar
  93. 93.
    Nilsson IAK, Lindfors C, Schalling M et al (2013) Anorexia and Hypothalamic Degeneration. In: Vitamins & Hormones. Elsevier, pp. 27–60Google Scholar
  94. 94.
    Ramoz N, Versini A, Gorwood P (2007) Eating disorders: an overview of treatment responses and the potential impact of vulnerability genes and endophenotypes. Expert Opin Pharmacother 8:2029–2044PubMedCrossRefGoogle Scholar
  95. 95.
    Collier DA, Arranz MJ, Li T et al (1997) Association between 5-HT2A gene promoter polymorphism and anorexia nervosa. Lancet 350:412PubMedCrossRefGoogle Scholar
  96. 96.
    Sorbi S, Nacmias B, Tedde A et al (1998) 5-HT2A promoter polymorphism in anorexia nervosa. Lancet 351:1785PubMedCrossRefGoogle Scholar
  97. 97.
    Enoch MA, Kaye WH, Rotondo A et al (1998) 5-HT2A promoter polymorphism -1438G/A, anorexia nervosa, and obsessive-compulsive disorder. Lancet 351:1785–1786PubMedCrossRefGoogle Scholar
  98. 98.
    Hinney A, Ziegler A, Nöthen MM et al (1997) 5-HT2A receptor gene polymorphisms, anorexia nervosa, and obesity. Lancet 350:1324–1325PubMedCrossRefGoogle Scholar
  99. 99.
    Campbell DA, Sundaramurthy D, Markham AF et al (1998) Lack of association between 5-HT2A gene promoter polymorphism and susceptibility to anorexia nervosa. Lancet 351:499PubMedCrossRefGoogle Scholar
  100. 100.
    Ziegler A, Hebebrand J, Görg T et al (1999) Further lack of association between the 5-HT2A gene promoter polymorphism and susceptibility to eating disorders and a meta-analysis pertaining to anorexia nervosa. Mol Psychiatry 4:410–412PubMedCrossRefGoogle Scholar
  101. 101.
    Nishiguchi N, Matsushita S, Suzuki K et al (2001) Association between 5HT2A receptor gene promoter region polymorphism and eating disorders in Japanese patients. Biol Psychiatry 50:123–128PubMedCrossRefGoogle Scholar
  102. 102.
    Ando T, Komaki G, Karibe M et al (2001) 5-HT2A promoter polymorphism is not associated with anorexia nervosa in Japanese patients. Psychiatr Genet 11:157–1160PubMedCrossRefGoogle Scholar
  103. 103.
    Kipman A, Bruins-Slot L, Boni C et al (2002) 5-HT(2A) gene promoter polymorphism as a modifying rather than a vulnerability factor in anorexia nervosa. Eur Psychiatry 17:227–229PubMedCrossRefGoogle Scholar
  104. 104.
    Ricca V, Nacmias B, Cellini E et al (2002) 5-HT2A receptor gene polymorphism and eating disorders. Neurosci Lett 323:105–108PubMedCrossRefGoogle Scholar
  105. 105.
    Fuentes JA, Lauzurica N, Hurtado A et al (2004) Analysis of the -1438 G/A polymorphism of the 5-HT2A serotonin receptor gene in bulimia nervosa patients with or without a history of anorexia nervosa. Psychiatr Genet 14:107–109PubMedCrossRefGoogle Scholar
  106. 106.
    Martásková D, Slachtová L, Kemlink D et al (2009) Polymorphisms in serotonin-related genes in anorexia nervosa. The first study in Czech population and metaanalyses with previously performed studies. Folia Biol (Praha) 55:192–197Google Scholar
  107. 107.
    Rybakowski F, Slopien A, Dmitrzak-Weglarz M et al (2006) The 5-HT2A -1438 A/G and 5-HTTLPR polymorphisms and personality dimensions in adolescent anorexia nervosa: association study. Neuropsychobiology 53:33–39PubMedCrossRefGoogle Scholar
  108. 108.
    Gorwood P, Adès J, Bellodi L et al (2002) The 5-HT(2A) -1438G/A polymorphism in anorexia nervosa: a combined analysis of 316 trios from six European centres. Mol Psychiatry 7:90–94PubMedCrossRefGoogle Scholar
  109. 109.
    Nacmias B, Ricca V, Tedde A et al (1999) 5-HT2A receptor gene polymorphisms in anorexia nervosa and bulimia nervosa. Neurosci Lett 277:134–136PubMedCrossRefGoogle Scholar
  110. 110.
    Pinheiro AP, Bulik CM, Thornton LM et al (2010) Association study of 182 candidate genes in anorexia nervosa. Am J Med Genet B Neuropsychiatr Genet 153B:1070–1080PubMedPubMedCentralGoogle Scholar
  111. 111.
    Wang K, Zhang H, Bloss CS et al (2011) A genome-wide association study on common SNPs and rare CNVs in anorexia nervosa. Mol Psychiatry 16:949–959PubMedCrossRefGoogle Scholar
  112. 112.
    Boraska V, Franklin CS, Floyd JA et al (2014) A genome-wide association study of anorexia nervosa. Mol Psychiatry 19(10):1085–1094PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Herbeth B, Aubry E, Fumeron F et al (2005) Polymorphism of the 5-HT2A receptor gene and food intakes in children and adolescents: the Stanislas Family Study. Am J Clin Nutr 82:467–470PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Philip Gorwood
    • 1
    • 2
  • Laurence Lanfumey
    • 2
  • Odile Viltart
    • 2
  • Nicolas Ramoz
    • 2
  1. 1.CMME (Hôpital Sainte-Anne) and Université Paris-DescartesParisFrance
  2. 2.Centre de Psychiatrie et Neurosciences (INSERM UMR894)ParisFrance

Personalised recommendations