5-HT2A Receptors and Pain

  • Christine Courteix
  • Amandine Dupuis
  • Pierre-Yves Martin
  • Benoit Sion
Chapter
Part of the The Receptors book series (REC, volume 32)

Abstract

Serotonin (5-hydroxytryptamine, 5-HT) is a key modulator of spinal nociceptive transmission. Among 5-HT receptors, the 5-HT2A subtype plays a critical role in the modulation of nociceptive information. Both pro- and antinociceptive effects of 5-HT2A receptor activation have been reported but converging evidence indicates an excitatory role for peripheral 5-HT2A receptors on pain transmission in acute, sub-chronic and chronic pain conditions. The central effects of 5-HT2A agonists which produce either anti-hyperalgesic or anti-allodynic effect seem to depend on the pathophysiology of pain. Neverthless, some data indicate that 5-HT acting drugs such as selective serotonin reuptake inhibitor (SSRI) antidepressants involve the 5-HT2A receptor to produce analgesia and that restoring 5-HT2A receptor functionality may contribute to enhance the analgesic efficacy of SSRI in metabolic and traumatic neuropathic pain.

Keywords

Serotonin 5-HT2A receptor Chronic pain Acute pain PDZ-proteins Antidepressants 

References

  1. 1.
    Merskey H, Bogduk N, International Association for the Study of Pain. Task Force on Taxonomy (1994) Classification of chronic pain : descriptions of chronic pain syndromes and definitions of pain terms, 2nd edn. IASP Press, SeattleGoogle Scholar
  2. 2.
    Millan MJ (2002) Descending control of pain. Prog Neurobiol 66(6):355–474CrossRefPubMedGoogle Scholar
  3. 3.
    Ding YQ, Marklund U, Yuan W, Yin J, Wegman L, Ericson J, Deneris E, Johnson RL, Chen ZF (2003) Lmx1b is essential for the development of serotonergic neurons. Nat Neurosci 6(9):933–938.  https://doi.org/10.1038/nn1104nn1104 CrossRefPubMedGoogle Scholar
  4. 4.
    Zhao ZQ, Chiechio S, Sun YG, Zhang KH, Zhao CS, Scott M, Johnson RL, Deneris ES, Renner KJ, Gereau RW, Chen ZF (2007) Mice lacking central serotonergic neurons show enhanced inflammatory pain and an impaired analgesic response to antidepressant drugs. J Neurosci 27(22):6045–6053CrossRefPubMedGoogle Scholar
  5. 5.
    Muller C, Jacobs BL (2010) Handbook of the behavioral neurobiology of serotonin. Academic, LondonGoogle Scholar
  6. 6.
    Castaneda-Corral G, Rocha-Gonzalez HI, Araiza-Saldana CI, Ambriz-Tututi M, Vidal-Cantu GC, Granados-Soto V (2009) Role of peripheral and spinal 5-HT6 receptors according to the rat formalin test. Neuroscience 162(2):444–452.  https://doi.org/10.1016/j.neuroscience.2009.04.072 CrossRefPubMedGoogle Scholar
  7. 7.
    Godinez-Chaparro B, Lopez-Santillan FJ, Orduna P, Granados-Soto V (2012) Secondary mechanical allodynia and hyperalgesia depend on descending facilitation mediated by spinal 5-HT(4), 5-HT(6) and 5-HT(7) receptors. Neuroscience 222:379–391.  https://doi.org/10.1016/j.neuroscience.2012.07.008 CrossRefPubMedGoogle Scholar
  8. 8.
    Liu J, Reid AR, Sawynok J (2013) Spinal serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 receptors, are involved in antinociception by systemically administered amitriptyline. Eur J Pharmacol 698(1–3):213–219.  https://doi.org/10.1016/j.ejphar.2012.10.042 CrossRefPubMedGoogle Scholar
  9. 9.
    Viguier F, Michot B, Hamon M, Bourgoin S (2013) Multiple roles of serotonin in pain control mechanisms--implications of 5-HT(7) and other 5-HT receptor types. Eur J Pharmacol 716(1–3):8–16.  https://doi.org/10.1016/j.ejphar.2013.01.074 CrossRefPubMedGoogle Scholar
  10. 10.
    Bockaert J, Claeysen S, Becamel C, Dumuis A, Marin P (2006) Neuronal 5-HT metabotropic receptors: fine-tuning of their structure, signaling, and roles in synaptic modulation. Cell Tissue Res 326(2):553–572.  https://doi.org/10.1007/s00441-006-0286-1 CrossRefPubMedGoogle Scholar
  11. 11.
    Becamel C, Galeotti N, Poncet J, Jouin P, Dumuis A, Bockaert J, Marin P (2002) A proteomic approach based on peptide affinity chromatography, 2-dimensional electrophoresis and mass spectrometry to identify multiprotein complexes interacting with membrane-bound receptors. Biol Proced Online 4:94–104CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Becamel C, Gavarini S, Chanrion B, Alonso G, Galeotti N, Dumuis A, Bockaert J, Marin P (2004) The serotonin 5-HT2A and 5-HT2C receptors interact with specific sets of PDZ proteins. J Biol Chem 279(19):20257–20266CrossRefPubMedGoogle Scholar
  13. 13.
    Gavarini S, Becamel C, Chanrion B, Bockaert J, Marin P (2004) Molecular and functional characterization of proteins interacting with the C-terminal domains of 5-HT2 receptors: emergence of 5-HT2 "receptosomes". Biol Cell 96(5):373–381CrossRefPubMedGoogle Scholar
  14. 14.
    Pichon X, Wattiez AS, Becamel C, Ehrlich I, Bockaert J, Eschalier A, Marin P, Courteix C (2010) Disrupting 5-HT(2A) receptor/PDZ protein interactions reduces hyperalgesia and enhances SSRI efficacy in neuropathic pain. Mol Ther 18(8):1462–1470.  https://doi.org/10.1038/mt.2010.101 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wattiez AS, Pichon X, Dupuis A, Hernandez A, Privat AM, Aissouni Y, Chalus M, Pelissier T, Eschalier A, Marin P, Courteix C (2013) Disruption of 5-HT2A receptor-PDZ protein interactions alleviates mechanical hypersensitivity in carrageenan-induced inflammation in rats. PLoS One 8(9):e74661.  https://doi.org/10.1371/journal.pone.0074661 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Doly S, Madeira A, Fischer J, Brisorgueil MJ, Daval G, Bernard R, Verge D, Conrath M (2004) The 5-HT2A receptor is widely distributed in the rat spinal cord and mainly localized at the plasma membrane of postsynaptic neurons. J Comp Neurol 472(4):496–511.  https://doi.org/10.1002/cne.20082 CrossRefPubMedGoogle Scholar
  17. 17.
    Fonseca MI, Ni YG, Dunning DD, Miledi R (2001) Distribution of serotonin 2A, 2C and 3 receptor mRNA in spinal cord and medulla oblongata. Brain Res Mol Brain Res 89(1–2):11–19CrossRefPubMedGoogle Scholar
  18. 18.
    Marlier L, Teilhac JR, Cerruti C, Privat A (1991) Autoradiographic mapping of 5-HT1, 5-HT1A, 5-HT1B and 5-HT2 receptors in the rat spinal cord. Brain Res 550(1):15–23CrossRefPubMedGoogle Scholar
  19. 19.
    Maeshima T, Ito R, Hamada S, Senzaki K, Hamaguchi-Hamada K, Shutoh F, Okado N (1998) The cellular localization of 5-HT2A receptors in the spinal cord and spinal ganglia of the adult rat. Brain Res 797(1):118–124CrossRefPubMedGoogle Scholar
  20. 20.
    Van Steenwinckel J, Noghero A, Thibault K, Brisorgueil MJ, Fischer J, Conrath M (2009) The 5-HT2A receptor is mainly expressed in nociceptive sensory neurons in rat lumbar dorsal root ganglia. Neuroscience 161(3):838–846.  https://doi.org/10.1016/j.neuroscience.2009.03.087 CrossRefPubMedGoogle Scholar
  21. 21.
    Wang YY, Wei YY, Huang J, Wang W, Tamamaki N, Li YQ, Wu SX (2009) Expression patterns of 5-HT receptor subtypes 1A and 2A on GABAergic neurons within the spinal dorsal horn of GAD67-GFP knock-in mice. J Chem Neuroanat 38(1):75–81.  https://doi.org/10.1016/j.jchemneu.2009.04.003 CrossRefPubMedGoogle Scholar
  22. 22.
    Liu FY, Xing GG, Qu XX, Xu IS, Han JS, Wan Y (2007) Roles of 5-hydroxytryptamine (5-HT) receptor subtypes in the inhibitory effects of 5-HT on C-fiber responses of spinal wide dynamic range neurons in rats. J Pharmacol Exp Ther 321(3):1046–1053CrossRefPubMedGoogle Scholar
  23. 23.
    Sasaki M, Ishizaki K, Obata H, Goto F (2001) Effects of 5-HT2 and 5-HT3 receptors on the modulation of nociceptive transmission in rat spinal cord according to the formalin test. Eur J Pharmacol 424(1):45–52CrossRefPubMedGoogle Scholar
  24. 24.
    Sasaki M, Obata H, Saito S, Goto F (2003) Antinociception with intrathecal alpha-methyl-5-hydroxytryptamine, a 5-hydroxytryptamine 2A/2C receptor agonist, in two rat models of sustained pain. Anesth Analg 96(4):1072–1078CrossRefPubMedGoogle Scholar
  25. 25.
    Okamoto K, Imbe H, Kimura A, Donishi T, Tamai Y, Senba E (2007) Activation of central 5HT2A receptors reduces the craniofacial nociception of rats. Neuroscience 147(4):1090–1102CrossRefPubMedGoogle Scholar
  26. 26.
    Kayser V, Elfassi IE, Aubel B, Melfort M, Julius D, Gingrich JA, Hamon M, Bourgoin S (2007) Mechanical, thermal and formalin-induced nociception is differentially altered in 5-HT1A-/-, 5-HT1B-/-, 5-HT2A-/-, 5-HT3A-/- and 5-HTT-/- knock-out male mice. Pain 130(3):235–248CrossRefPubMedGoogle Scholar
  27. 27.
    Sasaki M, Obata H, Kawahara K, Saito S, Goto F (2006) Peripheral 5-HT2A receptor antagonism attenuates primary thermal hyperalgesia and secondary mechanical allodynia after thermal injury in rats. Pain 122(1–2):130–136CrossRefPubMedGoogle Scholar
  28. 28.
    Kjorsvik Bertelsen A, Warsame Afrah A, Gustafsson H, Tjolsen A, Hole K, Stiller CO (2003) Stimulation of spinal 5-HT(2A/2C) receptors potentiates the capsaicin-induced in vivo release of substance P-like immunoreactivity in the rat dorsal horn. Brain Res 987(1):10–16CrossRefPubMedGoogle Scholar
  29. 29.
    Kjorsvik A, Tjolsen A, Hole K (2001) Activation of spinal serotonin(2A/2C) receptors augments nociceptive responses in the rat. Brain Res 910(1–2):179–181CrossRefPubMedGoogle Scholar
  30. 30.
    Rahman W, Bannister K, Bee LA, Dickenson AH (2011) A pronociceptive role for the 5-HT2 receptor on spinal nociceptive transmission: an in vivo electrophysiological study in the rat. Brain Res 1382:29–36.  https://doi.org/10.1016/j.brainres.2011.01.057 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Xu Q, Yaksh TL (2011) A brief comparison of the pathophysiology of inflammatory versus neuropathic pain. Curr Opin Anaesthesiol 24(4):400–407.  https://doi.org/10.1097/ACO.0b013e32834871df CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Liu FY, Qu XX, Ding X, Cai J, Jiang H, Wan Y, Han JS, Xing GG (2010) Decrease in the descending inhibitory 5-HT system in rats with spinal nerve ligation. Brain Res 1330:45–60.  https://doi.org/10.1016/j.brainres.2010.03.010 CrossRefPubMedGoogle Scholar
  33. 33.
    Obata H, Saito S, Sasaki M, Ishizaki K, Goto F (2001) Antiallodynic effect of intrathecally administered 5-HT(2) agonists in rats with nerve ligation. Pain 90(1–2):173–179CrossRefPubMedGoogle Scholar
  34. 34.
    Song Z, Meyerson BA, Linderoth B (2011) Spinal 5-HT receptors that contribute to the pain-relieving effects of spinal cord stimulation in a rat model of neuropathy. Pain 152(7):1666–1673.  https://doi.org/10.1016/j.pain.2011.03.012 CrossRefPubMedGoogle Scholar
  35. 35.
    Bouzidi N, Deokar H, Vogrig A, Boucherle B, Ripoche I, Abrunhosa-Thomas I, Dorr L, Wattiez AS, Lian LY, Marin P, Courteix C, Ducki S (2013) Identification of PDZ ligands by docking-based virtual screening for the development of novel analgesic agents. Bioorg Med Chem Lett 23(9):2624–2627.  https://doi.org/10.1016/j.bmcl.2013.02.100 CrossRefPubMedGoogle Scholar
  36. 36.
    Vogrig A, Dorr L, Bouzidi N, Boucherle B, Wattiez AS, Cassier E, Vallon G, Ripoche I, Abrunhosa-Thomas I, Marin P, Nauton L, Thery V, Courteix C, Lian LY, Ducki S (2013) Structure-based design of PDZ ligands as inhibitors of 5-HT2A receptor/PSD-95 PDZ1 domain interaction possessing anti-hyperalgesic activity. ACS Chem Biol 8(10):2209–2216.  https://doi.org/10.1021/cb400308u CrossRefPubMedGoogle Scholar
  37. 37.
    Van Steenwinckel J, Brisorgueil MJ, Fischer J, Verge D, Gingrich JA, Bourgoin S, Hamon M, Bernard R, Conrath M (2007) Role of spinal serotonin 5-HT2A receptor in 2′,3′-dideoxycytidine-induced neuropathic pain in the rat and the mouse. Pain 137(1):66–80CrossRefPubMedGoogle Scholar
  38. 38.
    Thibault K, Van Steenwinckel J, Brisorgueil MJ, Fischer J, Hamon M, Calvino B, Conrath M (2008) Serotonin 5-HT2A receptor involvement and Fos expression at the spinal level in vincristine-induced neuropathy in the rat. Pain 140(2):305–322.  https://doi.org/10.1016/j.pain.2008.09.006 CrossRefPubMedGoogle Scholar
  39. 39.
    Aira Z, Buesa I, Salgueiro M, Bilbao J, Aguilera L, Zimmermann M, Azkue JJ (2010) Subtype-specific changes in 5-HT receptor-mediated modulation of C fibre-evoked spinal field potentials are triggered by peripheral nerve injury. Neuroscience 168(3):831–841.  https://doi.org/10.1016/j.neuroscience.2010.04.032 CrossRefPubMedGoogle Scholar
  40. 40.
    Aira Z, Buesa I, Garcia del Cano G, Salgueiro M, Mendiable N, Mingo J, Aguilera L, Bilbao J, Azkue JJ (2012) Selective impairment of spinal mu-opioid receptor mechanism by plasticity of serotonergic facilitation mediated by 5-HT2A and 5-HT2B receptors. Pain 153(7):1418–1425.  https://doi.org/10.1016/j.pain.2012.03.017 CrossRefPubMedGoogle Scholar
  41. 41.
    Nitanda A, Yasunami N, Tokumo K, Fujii H, Hirai T, Nishio H (2005) Contribution of the peripheral 5-HT 2A receptor to mechanical hyperalgesia in a rat model of neuropathic pain. Neurochem Int 47(6):394–400CrossRefPubMedGoogle Scholar
  42. 42.
    Kato K, Sekiguchi M, Kikuchi S, Konno S (2015) The effect of a 5-HT2A receptor antagonist on pain-related behavior, endogenous 5-hydroxytryptamine production, and the expression 5-HT2A receptors in dorsal root ganglia in a rat lumbar disc herniation model. Spine (Phila Pa 1976) 40(6):357–362.  https://doi.org/10.1097/BRS.0000000000000769 CrossRefGoogle Scholar
  43. 43.
    Huang BQ, Wu B, Hong Y, Hu W (2015) Effects of blockade of 5-HT2A receptors in inflammatory site on complete Freund’s adjuvant-induced chronic hyperalgesia and neuropeptide Y expression in the spinal dorsal horn in rats. Sheng Li Xue Bao 67(5):463–469PubMedGoogle Scholar
  44. 44.
    Leiser SC, Li Y, Pehrson AL, Dale E, Smagin G, Sanchez C (2015) Serotonergic regulation of prefrontal cortical circuitries involved in cognitive processing: a review of individual 5-HT receptor mechanisms and concerted effects of 5-HT receptors exemplified by the multimodal antidepressant Vortioxetine. ACS Chem Neurosci 6(7):970–986.  https://doi.org/10.1021/cn500340j CrossRefPubMedGoogle Scholar
  45. 45.
    Anjaneyulu M, Chopra K (2004) Fluoxetine attenuates thermal hyperalgesia through 5-HT1/2 receptors in streptozotocin-induced diabetic mice. Eur J Pharmacol 497(3):285–292CrossRefPubMedGoogle Scholar
  46. 46.
    Yokogawa F, Kiuchi Y, Ishikawa Y, Otsuka N, Masuda Y, Oguchi K, Hosoyamada A (2002) An investigation of monoamine receptors involved in antinociceptive effects of antidepressants. Anesth Analg 95(1):163–168CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Christine Courteix
    • 1
    • 2
  • Amandine Dupuis
    • 1
    • 2
  • Pierre-Yves Martin
    • 1
    • 2
  • Benoit Sion
    • 1
    • 2
  1. 1.INSERM U1107, NEURO-DOLClermont-FerrandFrance
  2. 2.Laboratoire de Physiologie, UFR Pharmacie, Université Clermont AuvergneClermont-FerrandFrance

Personalised recommendations