Skip to main content

5-HT2A Receptors and Pain

  • Chapter
  • First Online:
5-HT2A Receptors in the Central Nervous System

Part of the book series: The Receptors ((REC,volume 32))

Abstract

Serotonin (5-hydroxytryptamine, 5-HT) is a key modulator of spinal nociceptive transmission. Among 5-HT receptors, the 5-HT2A subtype plays a critical role in the modulation of nociceptive information. Both pro- and antinociceptive effects of 5-HT2A receptor activation have been reported but converging evidence indicates an excitatory role for peripheral 5-HT2A receptors on pain transmission in acute, sub-chronic and chronic pain conditions. The central effects of 5-HT2A agonists which produce either anti-hyperalgesic or anti-allodynic effect seem to depend on the pathophysiology of pain. Neverthless, some data indicate that 5-HT acting drugs such as selective serotonin reuptake inhibitor (SSRI) antidepressants involve the 5-HT2A receptor to produce analgesia and that restoring 5-HT2A receptor functionality may contribute to enhance the analgesic efficacy of SSRI in metabolic and traumatic neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Merskey H, Bogduk N, International Association for the Study of Pain. Task Force on Taxonomy (1994) Classification of chronic pain : descriptions of chronic pain syndromes and definitions of pain terms, 2nd edn. IASP Press, Seattle

    Google Scholar 

  2. Millan MJ (2002) Descending control of pain. Prog Neurobiol 66(6):355–474

    Article  CAS  PubMed  Google Scholar 

  3. Ding YQ, Marklund U, Yuan W, Yin J, Wegman L, Ericson J, Deneris E, Johnson RL, Chen ZF (2003) Lmx1b is essential for the development of serotonergic neurons. Nat Neurosci 6(9):933–938. https://doi.org/10.1038/nn1104nn1104

    Article  CAS  PubMed  Google Scholar 

  4. Zhao ZQ, Chiechio S, Sun YG, Zhang KH, Zhao CS, Scott M, Johnson RL, Deneris ES, Renner KJ, Gereau RW, Chen ZF (2007) Mice lacking central serotonergic neurons show enhanced inflammatory pain and an impaired analgesic response to antidepressant drugs. J Neurosci 27(22):6045–6053

    Article  CAS  PubMed  Google Scholar 

  5. Muller C, Jacobs BL (2010) Handbook of the behavioral neurobiology of serotonin. Academic, London

    Google Scholar 

  6. Castaneda-Corral G, Rocha-Gonzalez HI, Araiza-Saldana CI, Ambriz-Tututi M, Vidal-Cantu GC, Granados-Soto V (2009) Role of peripheral and spinal 5-HT6 receptors according to the rat formalin test. Neuroscience 162(2):444–452. https://doi.org/10.1016/j.neuroscience.2009.04.072

    Article  CAS  PubMed  Google Scholar 

  7. Godinez-Chaparro B, Lopez-Santillan FJ, Orduna P, Granados-Soto V (2012) Secondary mechanical allodynia and hyperalgesia depend on descending facilitation mediated by spinal 5-HT(4), 5-HT(6) and 5-HT(7) receptors. Neuroscience 222:379–391. https://doi.org/10.1016/j.neuroscience.2012.07.008

    Article  CAS  PubMed  Google Scholar 

  8. Liu J, Reid AR, Sawynok J (2013) Spinal serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 receptors, are involved in antinociception by systemically administered amitriptyline. Eur J Pharmacol 698(1–3):213–219. https://doi.org/10.1016/j.ejphar.2012.10.042

    Article  CAS  PubMed  Google Scholar 

  9. Viguier F, Michot B, Hamon M, Bourgoin S (2013) Multiple roles of serotonin in pain control mechanisms--implications of 5-HT(7) and other 5-HT receptor types. Eur J Pharmacol 716(1–3):8–16. https://doi.org/10.1016/j.ejphar.2013.01.074

    Article  CAS  PubMed  Google Scholar 

  10. Bockaert J, Claeysen S, Becamel C, Dumuis A, Marin P (2006) Neuronal 5-HT metabotropic receptors: fine-tuning of their structure, signaling, and roles in synaptic modulation. Cell Tissue Res 326(2):553–572. https://doi.org/10.1007/s00441-006-0286-1

    Article  CAS  PubMed  Google Scholar 

  11. Becamel C, Galeotti N, Poncet J, Jouin P, Dumuis A, Bockaert J, Marin P (2002) A proteomic approach based on peptide affinity chromatography, 2-dimensional electrophoresis and mass spectrometry to identify multiprotein complexes interacting with membrane-bound receptors. Biol Proced Online 4:94–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Becamel C, Gavarini S, Chanrion B, Alonso G, Galeotti N, Dumuis A, Bockaert J, Marin P (2004) The serotonin 5-HT2A and 5-HT2C receptors interact with specific sets of PDZ proteins. J Biol Chem 279(19):20257–20266

    Article  CAS  PubMed  Google Scholar 

  13. Gavarini S, Becamel C, Chanrion B, Bockaert J, Marin P (2004) Molecular and functional characterization of proteins interacting with the C-terminal domains of 5-HT2 receptors: emergence of 5-HT2 "receptosomes". Biol Cell 96(5):373–381

    Article  CAS  PubMed  Google Scholar 

  14. Pichon X, Wattiez AS, Becamel C, Ehrlich I, Bockaert J, Eschalier A, Marin P, Courteix C (2010) Disrupting 5-HT(2A) receptor/PDZ protein interactions reduces hyperalgesia and enhances SSRI efficacy in neuropathic pain. Mol Ther 18(8):1462–1470. https://doi.org/10.1038/mt.2010.101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wattiez AS, Pichon X, Dupuis A, Hernandez A, Privat AM, Aissouni Y, Chalus M, Pelissier T, Eschalier A, Marin P, Courteix C (2013) Disruption of 5-HT2A receptor-PDZ protein interactions alleviates mechanical hypersensitivity in carrageenan-induced inflammation in rats. PLoS One 8(9):e74661. https://doi.org/10.1371/journal.pone.0074661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Doly S, Madeira A, Fischer J, Brisorgueil MJ, Daval G, Bernard R, Verge D, Conrath M (2004) The 5-HT2A receptor is widely distributed in the rat spinal cord and mainly localized at the plasma membrane of postsynaptic neurons. J Comp Neurol 472(4):496–511. https://doi.org/10.1002/cne.20082

    Article  CAS  PubMed  Google Scholar 

  17. Fonseca MI, Ni YG, Dunning DD, Miledi R (2001) Distribution of serotonin 2A, 2C and 3 receptor mRNA in spinal cord and medulla oblongata. Brain Res Mol Brain Res 89(1–2):11–19

    Article  CAS  PubMed  Google Scholar 

  18. Marlier L, Teilhac JR, Cerruti C, Privat A (1991) Autoradiographic mapping of 5-HT1, 5-HT1A, 5-HT1B and 5-HT2 receptors in the rat spinal cord. Brain Res 550(1):15–23

    Article  CAS  PubMed  Google Scholar 

  19. Maeshima T, Ito R, Hamada S, Senzaki K, Hamaguchi-Hamada K, Shutoh F, Okado N (1998) The cellular localization of 5-HT2A receptors in the spinal cord and spinal ganglia of the adult rat. Brain Res 797(1):118–124

    Article  PubMed  Google Scholar 

  20. Van Steenwinckel J, Noghero A, Thibault K, Brisorgueil MJ, Fischer J, Conrath M (2009) The 5-HT2A receptor is mainly expressed in nociceptive sensory neurons in rat lumbar dorsal root ganglia. Neuroscience 161(3):838–846. https://doi.org/10.1016/j.neuroscience.2009.03.087

    Article  PubMed  Google Scholar 

  21. Wang YY, Wei YY, Huang J, Wang W, Tamamaki N, Li YQ, Wu SX (2009) Expression patterns of 5-HT receptor subtypes 1A and 2A on GABAergic neurons within the spinal dorsal horn of GAD67-GFP knock-in mice. J Chem Neuroanat 38(1):75–81. https://doi.org/10.1016/j.jchemneu.2009.04.003

    Article  PubMed  Google Scholar 

  22. Liu FY, Xing GG, Qu XX, Xu IS, Han JS, Wan Y (2007) Roles of 5-hydroxytryptamine (5-HT) receptor subtypes in the inhibitory effects of 5-HT on C-fiber responses of spinal wide dynamic range neurons in rats. J Pharmacol Exp Ther 321(3):1046–1053

    Article  CAS  PubMed  Google Scholar 

  23. Sasaki M, Ishizaki K, Obata H, Goto F (2001) Effects of 5-HT2 and 5-HT3 receptors on the modulation of nociceptive transmission in rat spinal cord according to the formalin test. Eur J Pharmacol 424(1):45–52

    Article  CAS  PubMed  Google Scholar 

  24. Sasaki M, Obata H, Saito S, Goto F (2003) Antinociception with intrathecal alpha-methyl-5-hydroxytryptamine, a 5-hydroxytryptamine 2A/2C receptor agonist, in two rat models of sustained pain. Anesth Analg 96(4):1072–1078

    Article  CAS  PubMed  Google Scholar 

  25. Okamoto K, Imbe H, Kimura A, Donishi T, Tamai Y, Senba E (2007) Activation of central 5HT2A receptors reduces the craniofacial nociception of rats. Neuroscience 147(4):1090–1102

    Article  CAS  PubMed  Google Scholar 

  26. Kayser V, Elfassi IE, Aubel B, Melfort M, Julius D, Gingrich JA, Hamon M, Bourgoin S (2007) Mechanical, thermal and formalin-induced nociception is differentially altered in 5-HT1A-/-, 5-HT1B-/-, 5-HT2A-/-, 5-HT3A-/- and 5-HTT-/- knock-out male mice. Pain 130(3):235–248

    Article  CAS  PubMed  Google Scholar 

  27. Sasaki M, Obata H, Kawahara K, Saito S, Goto F (2006) Peripheral 5-HT2A receptor antagonism attenuates primary thermal hyperalgesia and secondary mechanical allodynia after thermal injury in rats. Pain 122(1–2):130–136

    Article  CAS  PubMed  Google Scholar 

  28. Kjorsvik Bertelsen A, Warsame Afrah A, Gustafsson H, Tjolsen A, Hole K, Stiller CO (2003) Stimulation of spinal 5-HT(2A/2C) receptors potentiates the capsaicin-induced in vivo release of substance P-like immunoreactivity in the rat dorsal horn. Brain Res 987(1):10–16

    Article  CAS  PubMed  Google Scholar 

  29. Kjorsvik A, Tjolsen A, Hole K (2001) Activation of spinal serotonin(2A/2C) receptors augments nociceptive responses in the rat. Brain Res 910(1–2):179–181

    Article  CAS  PubMed  Google Scholar 

  30. Rahman W, Bannister K, Bee LA, Dickenson AH (2011) A pronociceptive role for the 5-HT2 receptor on spinal nociceptive transmission: an in vivo electrophysiological study in the rat. Brain Res 1382:29–36. https://doi.org/10.1016/j.brainres.2011.01.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu Q, Yaksh TL (2011) A brief comparison of the pathophysiology of inflammatory versus neuropathic pain. Curr Opin Anaesthesiol 24(4):400–407. https://doi.org/10.1097/ACO.0b013e32834871df

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liu FY, Qu XX, Ding X, Cai J, Jiang H, Wan Y, Han JS, Xing GG (2010) Decrease in the descending inhibitory 5-HT system in rats with spinal nerve ligation. Brain Res 1330:45–60. https://doi.org/10.1016/j.brainres.2010.03.010

    Article  CAS  PubMed  Google Scholar 

  33. Obata H, Saito S, Sasaki M, Ishizaki K, Goto F (2001) Antiallodynic effect of intrathecally administered 5-HT(2) agonists in rats with nerve ligation. Pain 90(1–2):173–179

    Article  CAS  PubMed  Google Scholar 

  34. Song Z, Meyerson BA, Linderoth B (2011) Spinal 5-HT receptors that contribute to the pain-relieving effects of spinal cord stimulation in a rat model of neuropathy. Pain 152(7):1666–1673. https://doi.org/10.1016/j.pain.2011.03.012

    Article  CAS  PubMed  Google Scholar 

  35. Bouzidi N, Deokar H, Vogrig A, Boucherle B, Ripoche I, Abrunhosa-Thomas I, Dorr L, Wattiez AS, Lian LY, Marin P, Courteix C, Ducki S (2013) Identification of PDZ ligands by docking-based virtual screening for the development of novel analgesic agents. Bioorg Med Chem Lett 23(9):2624–2627. https://doi.org/10.1016/j.bmcl.2013.02.100

    Article  CAS  PubMed  Google Scholar 

  36. Vogrig A, Dorr L, Bouzidi N, Boucherle B, Wattiez AS, Cassier E, Vallon G, Ripoche I, Abrunhosa-Thomas I, Marin P, Nauton L, Thery V, Courteix C, Lian LY, Ducki S (2013) Structure-based design of PDZ ligands as inhibitors of 5-HT2A receptor/PSD-95 PDZ1 domain interaction possessing anti-hyperalgesic activity. ACS Chem Biol 8(10):2209–2216. https://doi.org/10.1021/cb400308u

    Article  CAS  PubMed  Google Scholar 

  37. Van Steenwinckel J, Brisorgueil MJ, Fischer J, Verge D, Gingrich JA, Bourgoin S, Hamon M, Bernard R, Conrath M (2007) Role of spinal serotonin 5-HT2A receptor in 2′,3′-dideoxycytidine-induced neuropathic pain in the rat and the mouse. Pain 137(1):66–80

    Article  PubMed  Google Scholar 

  38. Thibault K, Van Steenwinckel J, Brisorgueil MJ, Fischer J, Hamon M, Calvino B, Conrath M (2008) Serotonin 5-HT2A receptor involvement and Fos expression at the spinal level in vincristine-induced neuropathy in the rat. Pain 140(2):305–322. https://doi.org/10.1016/j.pain.2008.09.006

    Article  CAS  PubMed  Google Scholar 

  39. Aira Z, Buesa I, Salgueiro M, Bilbao J, Aguilera L, Zimmermann M, Azkue JJ (2010) Subtype-specific changes in 5-HT receptor-mediated modulation of C fibre-evoked spinal field potentials are triggered by peripheral nerve injury. Neuroscience 168(3):831–841. https://doi.org/10.1016/j.neuroscience.2010.04.032

    Article  CAS  PubMed  Google Scholar 

  40. Aira Z, Buesa I, Garcia del Cano G, Salgueiro M, Mendiable N, Mingo J, Aguilera L, Bilbao J, Azkue JJ (2012) Selective impairment of spinal mu-opioid receptor mechanism by plasticity of serotonergic facilitation mediated by 5-HT2A and 5-HT2B receptors. Pain 153(7):1418–1425. https://doi.org/10.1016/j.pain.2012.03.017

    Article  CAS  PubMed  Google Scholar 

  41. Nitanda A, Yasunami N, Tokumo K, Fujii H, Hirai T, Nishio H (2005) Contribution of the peripheral 5-HT 2A receptor to mechanical hyperalgesia in a rat model of neuropathic pain. Neurochem Int 47(6):394–400

    Article  CAS  PubMed  Google Scholar 

  42. Kato K, Sekiguchi M, Kikuchi S, Konno S (2015) The effect of a 5-HT2A receptor antagonist on pain-related behavior, endogenous 5-hydroxytryptamine production, and the expression 5-HT2A receptors in dorsal root ganglia in a rat lumbar disc herniation model. Spine (Phila Pa 1976) 40(6):357–362. https://doi.org/10.1097/BRS.0000000000000769

    Article  Google Scholar 

  43. Huang BQ, Wu B, Hong Y, Hu W (2015) Effects of blockade of 5-HT2A receptors in inflammatory site on complete Freund’s adjuvant-induced chronic hyperalgesia and neuropeptide Y expression in the spinal dorsal horn in rats. Sheng Li Xue Bao 67(5):463–469

    CAS  PubMed  Google Scholar 

  44. Leiser SC, Li Y, Pehrson AL, Dale E, Smagin G, Sanchez C (2015) Serotonergic regulation of prefrontal cortical circuitries involved in cognitive processing: a review of individual 5-HT receptor mechanisms and concerted effects of 5-HT receptors exemplified by the multimodal antidepressant Vortioxetine. ACS Chem Neurosci 6(7):970–986. https://doi.org/10.1021/cn500340j

    Article  CAS  PubMed  Google Scholar 

  45. Anjaneyulu M, Chopra K (2004) Fluoxetine attenuates thermal hyperalgesia through 5-HT1/2 receptors in streptozotocin-induced diabetic mice. Eur J Pharmacol 497(3):285–292

    Article  CAS  PubMed  Google Scholar 

  46. Yokogawa F, Kiuchi Y, Ishikawa Y, Otsuka N, Masuda Y, Oguchi K, Hosoyamada A (2002) An investigation of monoamine receptors involved in antinociceptive effects of antidepressants. Anesth Analg 95(1):163–168

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Courteix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Courteix, C., Dupuis, A., Martin, PY., Sion, B. (2018). 5-HT2A Receptors and Pain. In: Guiard, B., Di Giovanni, G. (eds) 5-HT2A Receptors in the Central Nervous System. The Receptors, vol 32. Humana Press, Cham. https://doi.org/10.1007/978-3-319-70474-6_14

Download citation

Publish with us

Policies and ethics