Skip to main content

Pharmacological Analysis in Favour of a Physiological Role for the Constitutive Activity of 5-HT2A Receptors in Learning

  • Chapter
  • First Online:

Part of the book series: The Receptors ((REC,volume 32))

Abstract

The Serotonin2A (5-hydroxytryptamin, 5-HT2A) receptor is one of the numerous seven transmembrane G protein coupled receptors for serotonin (5-HT) originally described as displaying a low affinity for its endogenous ligand. It is densely expressed in the cortex and the hippocampus of rodents, primates and humans brain. A role of 5-HT2A receptors in learning and memory has been proposed for years. In some behavioural tasks in rodents, 5-HT2A receptors would display a constitutive activity, a spontaneous activity of the receptor occurring without the presence of the endogenous ligand and silenced by inverse agonists. Nonetheless, the demonstration of the existence of such a subtle activity in living organisms relies on specific criteria and on clear-cut pharmacological evaluation. While it has been claimed that 5-HT2A receptor constitutive activity participates in the conditioned eyeblink response in rabbits, such an activity would not be systematically observed in other models of learning and conditioning such as the conditioned avoidance response in rats. Here, we propose a thorough pharmacological analysis of the available data arguing in favour of the involvement of constitutive activity of 5-HT2A receptors, mostly in learning tasks and discuss the functional significance of such an activity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

5,7-DHT:

5,7-dihydroxytryptamin

5-HT:

Serotonin

5-HT2A receptor:

5-hydroxytryptamine2A receptor

5-HT2C receptor:

5-hydroxytryptamine2C receptor

BOL:

d-bromolysergic acid diethylamide

CAR:

Conditioned avoidance response

CHO:

Chinese hamster ovary

DA:

dopamine

DOI:

(±)-1(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride

DOM:

d,l-2,5-dimethoxy-4-methylamphetamine

GPCR:

G-Protein coupled receptor

HEK-293:

Human embryonic kidney 293

IP:

Inositol phosphate

LSD:

d-lysergic acid diethylamide

MDA:

d,l-methylenedioxyamphetamine

MDMA:

d,l-methylenedioxymethamphetamine

PLA2:

Phospholipase A2

PLC:

Phospholipase C

PLD:

Phospholipase D

SERT:

Serotonin transporter

References

  1. Morisset S et al (2000) High constitutive activity of native H3 receptors regulates histamine neurons in brain. Nature 408(6814):860–864

    Article  CAS  PubMed  Google Scholar 

  2. Navailles S et al (2013a) Serotonin2C receptor constitutive activity: in vivo direct and indirect evidence and functional significance. Cent Nerv Syst Agents Med Chem 13(2):98–107

    Article  CAS  PubMed  Google Scholar 

  3. Seifert R, Wenzel-Seifert K (2002) Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors. Naunyn Schmiedeberg’s Arch Pharmacol 366(5):381–416

    Article  CAS  Google Scholar 

  4. Hoyer D et al (1994) International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 46(2):157–203

    CAS  PubMed  Google Scholar 

  5. Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71(4):533–554

    Article  CAS  PubMed  Google Scholar 

  6. Zifa E, Fillion G (1992) 5-Hydroxytryptamine receptors. Pharmacol Rev 44(3):401–458

    CAS  PubMed  Google Scholar 

  7. Schmidt CJ et al (1995) The role of 5-HT2A receptors in antipsychotic activity. Life Sci 56(25):2209–2222

    Article  CAS  PubMed  Google Scholar 

  8. Costa T, Herz A (1989) Antagonists with negative intrinsic activity at delta opioid receptors coupled to GTP-binding proteins. Proc Natl Acad Sci U S A 86(19):7321–7325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Milligan G, Bond RA, Lee M (1995) Inverse agonism: pharmacological curiosity or potential therapeutic strategy? Trends Pharmacol Sci 16(1):10–13

    Article  CAS  PubMed  Google Scholar 

  10. Weiner DM et al (2001) 5-hydroxytryptamine2A receptor inverse agonists as antipsychotics. J Pharmacol Exp Ther 299(1):268–276

    CAS  PubMed  Google Scholar 

  11. Harvey JA (2003) Role of the serotonin 5-HT(2A) receptor in learning. Learn Mem 10(5):355–362

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hoyer D et al (1986) Serotonin receptors in the human brain. II. Characterization and autoradiographic localization of 5-HT1C and 5-HT2 recognition sites. Brain Res 376(1):97–107

    Article  CAS  PubMed  Google Scholar 

  13. Lopez-Gimenez JF et al (1997) Selective visualization of rat brain 5-HT2A receptors by autoradiography with [3H]MDL 100,907. Naunyn Schmiedeberg’s Arch Pharmacol 356(4):446–454

    Article  CAS  Google Scholar 

  14. Lopez-Gimenez JF et al (1999) Human striosomes are enriched in 5-HT2A receptors: autoradiographical visualization with [3H]MDL100,907,[125I](+/−)DOI and [3H]ketanserin. Eur J Neurosci 11(10):3761–3765

    Article  CAS  PubMed  Google Scholar 

  15. Lopez-Gimenez JF et al (1998) [3H]MDL 100,907 labels 5-HT2A serotonin receptors selectively in primate brain. Neuropharmacology 37(9):1147–1158

    Article  CAS  PubMed  Google Scholar 

  16. Lopez-Gimenez JF et al (2001) Mapping of 5-HT2A receptors and their mRNA in monkey brain: [3H]MDL100,907 autoradiography and in situ hybridization studies. J Comp Neurol 429(4):571–589

    Article  CAS  PubMed  Google Scholar 

  17. Wright DE et al (1995) Comparative localization of serotonin1A, 1C, and 2 receptor subtype mRNAs in rat brain. J Comp Neurol 351(3):357–373

    Article  CAS  PubMed  Google Scholar 

  18. Blin J et al (1993) Loss of brain 5-HT2 receptors in Alzheimer’s disease. In vivo assessment with positron emission tomography and [18F]setoperone. Brain 116(Pt 3):497–510

    Article  PubMed  Google Scholar 

  19. Erritzoe D et al (2010) A nonlinear relationship between cerebral serotonin transporter and 5-HT(2A) receptor binding: an in vivo molecular imaging study in humans. J Neurosci 30(9):3391–3397

    Article  CAS  PubMed  Google Scholar 

  20. Leysen JE (2004) 5-HT2 receptors. Curr Drug Targets CNS Neurol Disord 3(1):11–26

    Article  CAS  PubMed  Google Scholar 

  21. Jakab RL, Goldman-Rakic PS (1998) 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci U S A 95(2):735–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aghajanian GK, Marek GJ (1997) Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology 36(4–5):589–599

    Article  CAS  PubMed  Google Scholar 

  23. Tanaka E, North RA (1993) Actions of 5-hydroxytryptamine on neurons of the rat cingulate cortex. J Neurophysiol 69(5):1749–1757

    Article  CAS  PubMed  Google Scholar 

  24. Doherty MD, Pickel VM (2000) Ultrastructural localization of the serotonin 2A receptor in dopaminergic neurons in the ventral tegmental area. Brain Res 864(2):176–185

    Article  CAS  PubMed  Google Scholar 

  25. Nocjar C, Roth BL, Pehek EA (2002) Localization of 5-HT(2A) receptors on dopamine cells in subnuclei of the midbrain A10 cell group. Neuroscience 111(1):163–176

    Article  CAS  PubMed  Google Scholar 

  26. Bombardi C, Di Giovanni G (2013) Functional anatomy of 5-HT2A receptors in the amygdala and hippocampal complex: relevance to memory functions. Exp Brain Res 230(4):427–439

    Article  CAS  PubMed  Google Scholar 

  27. Barre A, Berthoux C, De Bundel D, Valjent E, Bockaert J, Marin P, Becamel C (2016) Presynaptic serotonin 2A receptors modulate thalamocortical plasticity and associative learning. Proceedings of the National Academy of Sciences of the United States of America 113:E1382–E1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roth BL et al (1998) Serotonin 5-HT2A receptors: molecular biology and mechanisms of regulation. Crit Rev Neurobiol 12(4):319–338

    Article  CAS  PubMed  Google Scholar 

  29. Shapiro DA et al (2002) Evidence for a model of agonist-induced activation of 5-hydroxytryptamine 2A serotonin receptors that involves the disruption of a strong ionic interaction between helices 3 and 6. J Biol Chem 277(13):11441–11449

    Article  CAS  PubMed  Google Scholar 

  30. Boulougouris V, Glennon JC, Robbins TW (2008) Dissociable effects of selective 5-HT2A and 5-HT2C receptor antagonists on serial spatial reversal learning in rats. Neuropsychopharmacology 33(8):2007–2019

    Article  CAS  PubMed  Google Scholar 

  31. Harvey JA (1996) Serotonergic regulation of associative learning. Behav Brain Res 73(1–2):47–50

    CAS  PubMed  Google Scholar 

  32. Winstanley CA et al (2004) 5-HT2A and 5-HT2C receptor antagonists have opposing effects on a measure of impulsivity: interactions with global 5-HT depletion. Psychopharmacology 176(3–4):376–385

    Article  CAS  PubMed  Google Scholar 

  33. Woolley DW, Shaw E (1954) A biochemical and pharmacological suggestion about certain mental disorders. Proc Natl Acad Sci U S A 40(4):228–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Abi-Saab W et al (2002) Ritanserin antagonism of m-chlorophenylpiperazine effects in neuroleptic-free schizophrenics patients: support for serotonin-2 receptor modulation of schizophrenia symptoms. Psychopharmacology 162(1):55–62

    Article  CAS  PubMed  Google Scholar 

  35. Iqbal N, van Praag HM (1995) The role of serotonin in schizophrenia. Eur Neuropsychopharmacol 5(Suppl):11–23

    Article  CAS  PubMed  Google Scholar 

  36. Krystal JH et al (1993) m-Chlorophenylpiperazine effects in neuroleptic-free schizophrenic patients. Evidence implicating serotonergic systems in the positive symptoms of schizophrenia. Arch Gen Psychiatry 50(8):624–635

    Article  CAS  PubMed  Google Scholar 

  37. Meltzer HY, Matsubara S, Lee JC (1989) Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J Pharmacol Exp Ther 251(1):238–246

    CAS  PubMed  Google Scholar 

  38. Meltzer HY et al (2003) Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 27(7):1159–1172

    Article  CAS  Google Scholar 

  39. Howell LL, Cunningham KA (2015) Serotonin 5-HT2 receptor interactions with dopamine function: implications for therapeutics in cocaine use disorder. Pharmacol Rev 67(1):176–197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Guiard BP, Di Giovanni G (2015) Central serotonin-2A (5-HT2A) receptor dysfunction in depression and epilepsy: the missing link? Front Pharmacol 6:46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Weisstaub NV et al (2006) Cortical 5-HT2A receptor signaling modulates anxiety-like behaviors in mice. Science 313(5786):536–540

    Article  CAS  PubMed  Google Scholar 

  42. Cummings J et al (2014) Pimavanserin for patients with Parkinson’s disease psychosis: a randomised, placebo-controlled phase 3 trial. Lancet 383(9916):533–540

    Article  CAS  PubMed  Google Scholar 

  43. Berg KA et al (2008) A conservative, single-amino acid substitution in the second cytoplasmic domain of the human Serotonin2C receptor alters both ligand-dependent and -independent receptor signaling. J Pharmacol Exp Ther 324(3):1084–1092

    Article  CAS  PubMed  Google Scholar 

  44. Berg KA et al (2005) Physiological relevance of constitutive activity of 5-HT2A and 5-HT2C receptors. Trends Pharmacol Sci 26(12):625–630

    Article  CAS  PubMed  Google Scholar 

  45. Berg KA et al (1998) Pleiotropic behavior of 5-HT2A and 5-HT2C receptor agonists. Ann N Y Acad Sci 861:104–110

    Article  CAS  PubMed  Google Scholar 

  46. Kenakin T (2001) Inverse, protean, and ligand-selective agonism: matters of receptor conformation. FASEB J 15(3):598–611

    Article  CAS  PubMed  Google Scholar 

  47. Kenakin T (2004) Efficacy as a vector: the relative prevalence and paucity of inverse agonism. Mol Pharmacol 65(1):2–11

    Article  CAS  PubMed  Google Scholar 

  48. Milligan G, Bond RA (1997) Inverse agonism and the regulation of receptor number. Trends Pharmacol Sci 18(12):468–474

    Article  CAS  PubMed  Google Scholar 

  49. Gray JA, Roth BL (2001) Paradoxical trafficking and regulation of 5-HT(2A) receptors by agonists and antagonists. Brain Res Bull 56(5):441–451

    Article  CAS  PubMed  Google Scholar 

  50. Arrang JM, Morisset S, Gbahou F (2007) Constitutive activity of the histamine H3 receptor. Trends Pharmacol Sci 28(7):350–357

    Article  CAS  PubMed  Google Scholar 

  51. De Deurwaerdere P et al (2004) Constitutive activity of the serotonin2C receptor inhibits in vivo dopamine release in the rat striatum and nucleus accumbens. J Neurosci 24(13):3235–3241

    Article  PubMed  CAS  Google Scholar 

  52. Hannon J, Hoyer D (2008) Molecular biology of 5-HT receptors. Behav Brain Res 195(1):198–213

    Article  CAS  PubMed  Google Scholar 

  53. Raymond JR et al (2001) Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol Ther 92(2–3):179–212

    Article  CAS  PubMed  Google Scholar 

  54. Egan CT, Herrick-Davis K, Teitler M (1998) Creation of a constitutively activated state of the 5-hydroxytryptamine2A receptor by site-directed mutagenesis: inverse agonist activity of antipsychotic drugs. J Pharmacol Exp Ther 286(1):85–90

    CAS  PubMed  Google Scholar 

  55. Grotewiel MS, Sanders-Bush E (1999) Differences in agonist-independent activity of 5-Ht2A and 5-HT2c receptors revealed by heterologous expression. Naunyn Schmiedeberg’s Arch Pharmacol 359(1):21–27

    Article  CAS  Google Scholar 

  56. Teitler M, Herrick-Davis K, Purohit A (2002) Constitutive activity of G-protein coupled receptors: emphasis on serotonin receptors. Curr Top Med Chem 2(6):529–538

    Article  CAS  PubMed  Google Scholar 

  57. Muntasir HA et al (2006) Inverse agonist activity of sarpogrelate, a selective 5-HT2A-receptor antagonist, at the constitutively active human 5-HT2A receptor. J Pharmacol Sci 102(2):189–195

    Article  PubMed  CAS  Google Scholar 

  58. Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38(8):1083–1152

    Article  CAS  PubMed  Google Scholar 

  59. Gray JA et al (2003) The interaction of a constitutively active arrestin with the arrestin-insensitive 5-HT(2A) receptor induces agonist-independent internalization. Mol Pharmacol 63(5):961–972

    Article  CAS  PubMed  Google Scholar 

  60. Karaki S et al (2014) Quantitative phosphoproteomics unravels biased phosphorylation of serotonin 2A receptor at Ser280 by hallucinogenic versus nonhallucinogenic agonists. Mol Cell Proteomics 13(5):1273–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Romero G, von Zastrow M, Friedman PA (2011) Role of PDZ proteins in regulating trafficking, signaling, and function of GPCRs: means, motif, and opportunity. Adv Pharmacol 62:279–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Becamel C et al (2004) The serotonin 5-HT2A and 5-HT2C receptors interact with specific sets of PDZ proteins. J Biol Chem 279(19):20257–20266

    Article  CAS  PubMed  Google Scholar 

  63. Dunn HA, Ferguson SS (2015) PDZ protein regulation of G protein-coupled receptor trafficking and signaling pathways. Mol Pharmacol 88(4):624–639

    Article  CAS  PubMed  Google Scholar 

  64. Grotewiel MS, Sanders-Bush E (1994) Regulation of serotonin2A receptors in heterologous expression systems. J Neurochem 63(4):1255–1260

    Article  CAS  PubMed  Google Scholar 

  65. Albizu L et al (2011) Functional crosstalk and heteromerization of serotonin 5-HT2A and dopamine D2 receptors. Neuropharmacology 61(4):770–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gonzalez-Maeso J et al (2008) Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452(7183):93–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Teitler M, Herrick-Davis K (2014) Determining the oligomer number of native GPCR using florescence correlation spectroscopy and drug-induced inactivation-reactivation. Curr Pharm Biotechnol 15(10):927–937

    Article  CAS  PubMed  Google Scholar 

  68. Vinals X et al (2015) Cognitive impairment induced by delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid CB1 and serotonin 5-HT2A receptors. PLoS Biol 13(7):e1002194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Borroto-Escuela DO et al (2014) Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2-5-HT2A heteroreceptor complexes. Biochem Biophys Res Commun 443(1):278–284

    Article  CAS  PubMed  Google Scholar 

  70. Di Giovanni G et al (1999) Selective blockade of serotonin-2C/2B receptors enhances mesolimbic and mesostriatal dopaminergic function: a combined in vivo electrophysiological and microdialysis study. Neuroscience 91(2):587–597

    Article  PubMed  Google Scholar 

  71. Kehne JH et al (1996) Effects of the selective 5-HT2A receptor antagonist MDL 100,907 on MDMA-induced locomotor stimulation in rats. Neuropsychopharmacology 15(2):116–124

    Article  CAS  PubMed  Google Scholar 

  72. Palfreyman MG et al (1993) Electrophysiological, biochemical and behavioral evidence for 5-HT2 and 5-HT3 mediated control of dopaminergic function. Psychopharmacology 112(1 Suppl):S60–S67

    Article  CAS  PubMed  Google Scholar 

  73. Welsh SE, Romano AG, Harvey JA (1998b) Effects of serotonin 5-HT(2A/2C) antagonists on associative learning in the rabbit. Psychopharmacology 137(2):157–163

    Article  CAS  PubMed  Google Scholar 

  74. Welsh SE et al (1998a) Effects of LSD, ritanserin, 8-OH-DPAT, and lisuride on classical conditioning in the rabbit. Pharmacol Biochem Behav 59(2):469–475

    Article  CAS  PubMed  Google Scholar 

  75. Romano AG, Hood H, Harvey JA (2000) Dissociable effects of the 5-HT(2) antagonist mianserin on associative learning and performance in the rabbit. Pharmacol Biochem Behav 67(1):103–110

    Article  CAS  PubMed  Google Scholar 

  76. Romano AG, Harvey JA (1993) Enhanced learning following a single, acute dose of MDA. Pharmacol Biochem Behav 44(4):965–969

    Article  CAS  PubMed  Google Scholar 

  77. Romano AG, Harvey JA (1994) MDMA enhances associative and nonassociative learning in the rabbit. Pharmacol Biochem Behav 47(2):289–293

    Article  CAS  PubMed  Google Scholar 

  78. Knight AR et al (2004) Pharmacological characterisation of the agonist radioligand binding site of 5-HT(2A), 5-HT(2B) and 5-HT(2C) receptors. Naunyn Schmiedeberg’s Arch Pharmacol 370(2):114–123

    Article  CAS  Google Scholar 

  79. Engel G et al (1986) Identity of inhibitory presynaptic 5-hydroxytryptamine (5-HT) autoreceptors in the rat brain cortex with 5-HT1B binding sites. Naunyn Schmiedeberg’s Arch Pharmacol 332(1):1–7

    Article  CAS  Google Scholar 

  80. Hoyer D, Schoeffter P (1991) 5-HT receptors: subtypes and second messengers. J Recept Res 11(1–4):197–214

    Article  CAS  PubMed  Google Scholar 

  81. Titeler M, Lyon RA, Glennon RA (1988) Radioligand binding evidence implicates the brain 5-HT2 receptor as a site of action for LSD and phenylisopropylamine hallucinogens. Psychopharmacology 94(2):213–216

    Article  CAS  PubMed  Google Scholar 

  82. Battaglia G et al (1988) Pharmacologic profile of MDMA (3,4-methylenedioxymethamphetamine) at various brain recognition sites. Eur J Pharmacol 149(1–2):159–163

    Article  CAS  PubMed  Google Scholar 

  83. Lyon RA, Glennon RA, Titeler M (1986) 3,4-Methylenedioxymethamphetamine (MDMA): stereoselective interactions at brain 5-HT1 and 5-HT2 receptors. Psychopharmacology 88(4):525–526

    Article  CAS  PubMed  Google Scholar 

  84. Kahn RS, Wetzler S (1991) m-Chlorophenylpiperazine as a probe of serotonin function. Biol Psychiatry 30(11):1139–1166

    Article  CAS  PubMed  Google Scholar 

  85. Hoyer D, Neijt HC (1988) Identification of serotonin 5-HT3 recognition sites in membranes of N1E-115 neuroblastoma cells by radioligand binding. Mol Pharmacol 33(3):303–309

    CAS  PubMed  Google Scholar 

  86. Kilpatrick GJ, Jones BJ, Tyers MB (1989) Binding of the 5-HT3 ligand, [3H]GR65630, to rat area postrema, vagus nerve and the brains of several species. Eur J Pharmacol 159(2):157–164

    Article  CAS  PubMed  Google Scholar 

  87. Forbes IT et al (1993) N-(1-methyl-5-indolyl)-N′-(3-pyridyl)urea hydrochloride: the first selective 5-HT1C receptor antagonist. J Med Chem 36(8):1104–1107

    Article  CAS  PubMed  Google Scholar 

  88. Meneses A (2002) Involvement of 5-HT(2A/2B/2C) receptors on memory formation: simple agonism, antagonism, or inverse agonism? Cell Mol Neurobiol 22(5–6):675–688

    Article  CAS  PubMed  Google Scholar 

  89. Leysen JE et al (1988) Identification of nonserotonergic [3H]ketanserin binding sites associated with nerve terminals in rat brain and with platelets; relation with release of biogenic amine metabolites induced by ketanserin- and tetrabenazine-like drugs. J Pharmacol Exp Ther 244(1):310–321

    CAS  PubMed  Google Scholar 

  90. Wainscott DB et al (1996) Pharmacologic characterization of the human 5-hydroxytryptamine2B receptor: evidence for species differences. J Pharmacol Exp Ther 276(2):720–727

    CAS  PubMed  Google Scholar 

  91. Green JP et al (1977) Antagonism of histamine-activated adenylate cyclase in brain by D-lysergic acid diethylamide. Proc Natl Acad Sci U S A 74(12):5697–5701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gonzalez-Maeso J et al (2007) Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 53(3):439–452

    Article  CAS  PubMed  Google Scholar 

  93. Harvey JA et al (1999) Effect of 5-HT2 receptor antagonists on a cranial nerve reflex in the rabbit: evidence for inverse agonism. Psychopharmacology 141(2):162–168

    Article  CAS  PubMed  Google Scholar 

  94. Romano AG et al (2006) Effect of serotonin depletion on 5-HT2A-mediated learning in the rabbit: evidence for constitutive activity of the 5-HT2A receptor in vivo. Psychopharmacology 184(2):173–181

    Article  CAS  PubMed  Google Scholar 

  95. Winsky L, Harvey JA (1992) 6-Hydroxydopamine induced impairment of Pavlovian conditioning in the rabbit. Neurochem Res 17(5):415–422

    Article  CAS  PubMed  Google Scholar 

  96. Di Giovanni G, De Deurwaerdere P (2016) New therapeutic opportunities for 5-HT2C receptor ligands in neuropsychiatric disorders. Pharmacol Ther 157:125–162

    Article  PubMed  CAS  Google Scholar 

  97. van Wijngaarden I, Tulp MT, Soudijn W (1990) The concept of selectivity in 5-HT receptor research. Eur J Pharmacol 188(6):301–312

    Article  PubMed  Google Scholar 

  98. Garratt JC et al (1991) Inhibition of 5-hydroxytryptamine neuronal activity by the 5-HT agonist, DOI. Eur J Pharmacol 199(3):349–355

    Article  CAS  PubMed  Google Scholar 

  99. Hery F, Ternaux JP (1981) Regulation of release processes in central serotoninergic neurons. J Physiol Paris 77(2–3):287–301

    CAS  PubMed  Google Scholar 

  100. Wichems CH, Hollingsworth CK, Bennett BA (1995) Release of serotonin induced by 3,4-methylenedioxymethamphetamine (MDMA) and other substituted amphetamines in cultured fetal raphe neurons: further evidence for calcium-independent mechanisms of release. Brain Res 695(1):10–18

    Article  CAS  PubMed  Google Scholar 

  101. Carboni E, Di Chiara G (1989) Serotonin release estimated by transcortical dialysis in freely-moving rats. Neuroscience 32(3):637–645

    Article  CAS  PubMed  Google Scholar 

  102. Strange PG (2002) Mechanisms of inverse agonism at G-protein-coupled receptors. Trends Pharmacol Sci 23(2):89–95

    Article  CAS  PubMed  Google Scholar 

  103. Dave KD, Harvey JA, Aloyo VJ (2007) The time-course for up- and down-regulation of the cortical 5-hydroxytryptamine (5-HT)2A receptor density predicts 5-HT2A receptor-mediated behavior in the rabbit. J Pharmacol Exp Ther 323(1):327–335

    Article  CAS  PubMed  Google Scholar 

  104. Harvey JA et al (2004) Selective remodeling of rabbit frontal cortex: relationship between 5-HT2A receptor density and associative learning. Psychopharmacology 172(4):435–442

    Article  CAS  PubMed  Google Scholar 

  105. Barker EL et al (1994) Constitutively active 5-hydroxytryptamine2C receptors reveal novel inverse agonist activity of receptor ligands. J Biol Chem 269(16):11687–11690

    CAS  PubMed  Google Scholar 

  106. Amato D et al (2015) Neuropharmacology of light-induced locomotor activation. Neuropharmacology 95:243–251

    Article  CAS  PubMed  Google Scholar 

  107. Harvey ML, Swallows CL, Cooper MA (2012) A double dissociation in the effects of 5-HT2A and 5-HT2C receptors on the acquisition and expression of conditioned defeat in Syrian hamsters. Behav Neurosci 126(4):530–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Clinard CT et al (2015) Activation of 5-HT2a receptors in the basolateral amygdala promotes defeat-induced anxiety and the acquisition of conditioned defeat in Syrian hamsters. Neuropharmacology 90:102–112

    Article  CAS  PubMed  Google Scholar 

  109. Zhang G et al (2013) Stimulation of serotonin 2A receptors facilitates consolidation and extinction of fear memory in C57BL/6J mice. Neuropharmacology 64:403–413

    Article  CAS  PubMed  Google Scholar 

  110. Bekinschtein P et al (2013) Role of medial prefrontal cortex serotonin 2A receptors in the control of retrieval of recognition memory in rats. J Neurosci 33(40):15716–15725

    Article  CAS  PubMed  Google Scholar 

  111. Dougherty JP, Aloyo VJ (2011) Pharmacological and behavioral characterization of the 5-HT2A receptor in C57BL/6N mice. Psychopharmacology 215(3):581–593

    Article  CAS  PubMed  Google Scholar 

  112. Wadenberg ML (2010) Conditioned avoidance response in the development of new antipsychotics. Curr Pharm Des 16(3):358–370

    Article  CAS  PubMed  Google Scholar 

  113. Wadenberg MG et al (2001) Antagonism at 5-HT(2A) receptors potentiates the effect of haloperidol in a conditioned avoidance response task in rats. Pharmacol Biochem Behav 68(3):363–370

    Article  CAS  PubMed  Google Scholar 

  114. Wadenberg ML et al (1998) Enhancement of antipsychoticlike properties of raclopride in rats using the selective serotonin2A receptor antagonist MDL 100,907. Biol Psychiatry 44(6):508–515

    Article  CAS  PubMed  Google Scholar 

  115. Wadenberg ML et al (1996) Enhancement of antipsychotic-like properties of the dopamine D2 receptor antagonist, raclopride, by the additional treatment with the 5-HT2 receptor blocking agent, ritanserin, in the rat. Eur Neuropsychopharmacol 6(4):305–310

    Article  CAS  PubMed  Google Scholar 

  116. Wiker C et al (2005) Adjunctive treatment with mianserin enhances effects of raclopride on cortical dopamine output and, in parallel, its antipsychotic-like effect. Neuropsychiatr Dis Treat 1(4):356–372

    PubMed  PubMed Central  Google Scholar 

  117. Wadenberg ML, Ahlenius S (1988) Suppression of conditioned avoidance by 8-OH-DPAT in the rat. J Neural Transm 74(3):195–198

    Article  CAS  PubMed  Google Scholar 

  118. Marquis KL et al (2007) WAY-163909 [(7bR,10aR)-1,2,3,4,8,9,10,10a-octahydro-7bH-cyclopenta-[b][1,4]diazepino[6,7,1hi ]indole]: a novel 5-hydroxytryptamine 2C receptor-selective agonist with preclinical antipsychotic-like activity. J Pharmacol Exp Ther 320(1):486–496

    Article  CAS  PubMed  Google Scholar 

  119. Siuciak JA et al (2007) CP-809,101, a selective 5-HT2C agonist, shows activity in animal models of antipsychotic activity. Neuropharmacology 52(2):279–290

    Article  CAS  PubMed  Google Scholar 

  120. Meneses A (2003) A pharmacological analysis of an associative learning task: 5-HT(1) to 5-HT(7) receptor subtypes function on a pavlovian/instrumental autoshaped memory. Learn Mem 10(5):363–372

    Article  PubMed  PubMed Central  Google Scholar 

  121. Meneses A, Terron JA, Hong E (1997) Effects of the 5-HT receptor antagonists GR127935 (5-HT1B/1D) and MDL100907 (5-HT2A) in the consolidation of learning. Behav Brain Res 89(1–2):217–223

    Article  CAS  PubMed  Google Scholar 

  122. Meneses A, Hong E (1997) Role of 5-HT1B, 5-HT2A and 5-HT2C receptors in learning. Behav Brain Res 87(1):105–110

    Article  CAS  PubMed  Google Scholar 

  123. Meneses A, Hong E (1994) Mechanism of action of 8-OH-DPAT on learning and memory. Pharmacol Biochem Behav 49(4):1083–1086

    Article  CAS  PubMed  Google Scholar 

  124. Navailles S, De Deurwaerdère P (2010) The constitutive activity of 5-HT2C receptors as an additional modality of interaction of the serotonergic system in motor control. In: Di Giovanni G, Di Matteo V, Esposito E (eds) 5-HT2C receptors in the pathophysiology of CNS disease, The Receptors series: Springer. Humana Press, Totowa, pp 187–214

    Google Scholar 

  125. Walker EA, Foley JJ (2010) Acquisition session length modulates consolidation effects produced by 5-HT2C ligands in a mouse autoshaping-operant procedure. Behav Pharmacol 21(2):83–89

    Article  CAS  PubMed  Google Scholar 

  126. Leggio GM et al (2009) In vivo evidence that constitutive activity of serotonin2C receptors in the medial prefrontal cortex participates in the control of dopamine release in the rat nucleus accumbens: differential effects of inverse agonist versus antagonist. J Neurochem 111(2):614–623

    Article  CAS  PubMed  Google Scholar 

  127. Murray KC et al (2010) Recovery of motoneuron and locomotor function after spinal cord injury depends on constitutive activity in 5-HT2C receptors. Nat Med 16(6):694–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Navailles S et al (2013b) Serotonin2C ligands exhibiting full negative and positive intrinsic activity elicit purposeless oral movements in rats: distinct effects of agonists and inverse agonists in a rat model of Parkinson’s disease. Int J Neuropsychopharmacol 16(3):593–606

    Article  CAS  PubMed  Google Scholar 

  129. Eriksson E et al (1999) Effects of mCPP on the extracellular concentrations of serotonin and dopamine in rat brain. Neuropsychopharmacology 20(3):287–296

    Article  CAS  PubMed  Google Scholar 

  130. Navailles S et al (2006) Region-dependent regulation of mesoaccumbens dopamine neurons in vivo by the constitutive activity of central serotonin2C receptors. J Neurochem 99(4):1311–1319

    Article  CAS  PubMed  Google Scholar 

  131. De Deurwaerdere P, Di Giovanni G (2017) Serotonergic modulation of the activity of mesencephalic dopaminergic systems: therapeutic implications. Prog Neurobiol 151:175–236

    Google Scholar 

  132. Gudelsky GA, Yamamoto BK, Nash JF (1994) Potentiation of 3,4-methylenedioxymethamphetamine-induced dopamine release and serotonin neurotoxicity by 5-HT2 receptor agonists. Eur J Pharmacol 264(3):325–330

    Article  CAS  PubMed  Google Scholar 

  133. Schmidt CJ et al (1992) 5-HT2 receptors exert a state-dependent regulation of dopaminergic function: studies with MDL 100,907 and the amphetamine analogue, 3,4-methylenedioxymethamphetamine. Eur J Pharmacol 223(1):65–74

    Article  CAS  PubMed  Google Scholar 

  134. Schmidt CJ, Sullivan CK, Fadayel GM (1994) Blockade of striatal 5-hydroxytryptamine2 receptors reduces the increase in extracellular concentrations of dopamine produced by the amphetamine analogue 3,4-methylenedioxymethamphetamine. J Neurochem 62(4):1382–1389

    Article  CAS  PubMed  Google Scholar 

  135. Ichikawa J, Meltzer HY (1995) DOI, a 5-HT2A/2C receptor agonist, potentiates amphetamine-induced dopamine release in rat striatum. Brain Res 698(1–2):204–208

    Article  CAS  PubMed  Google Scholar 

  136. Lucas G et al (2000) The effect of serotonergic agents on haloperidol-induced striatal dopamine release in vivo: opposite role of 5-HT(2A) and 5-HT(2C) receptor subtypes and significance of the haloperidol dose used. Neuropharmacology 39(6):1053–1063

    Article  CAS  PubMed  Google Scholar 

  137. Ichikawa J et al (1995) R(+)-8-OH-DPAT, a 5-HT1A receptor agonist, inhibits amphetamine-induced dopamine release in rat striatum and nucleus accumbens. Eur J Pharmacol 287(2):179–184

    Article  CAS  PubMed  Google Scholar 

  138. Porras G et al (2002) 5-HT2A and 5-HT2C/2B receptor subtypes modulate dopamine release induced in vivo by amphetamine and morphine in both the rat nucleus accumbens and striatum. Neuropsychopharmacology 26(3):311–324

    Article  CAS  PubMed  Google Scholar 

  139. Meltzer HY et al (2010) Pimavanserin, a serotonin(2A) receptor inverse agonist, for the treatment of parkinson’s disease psychosis. Neuropsychopharmacology 35(4):881–892

    Article  CAS  PubMed  Google Scholar 

  140. Weiner DM et al (2003) Psychosis of Parkinson’s disease: serotonin 2A receptor inverse agonists as potential therapeutics. Curr Opin Investig Drugs 4(7):815–819

    CAS  PubMed  Google Scholar 

  141. Navailles S et al (2010) High-frequency stimulation of the subthalamic nucleus and L-3,4-dihydroxyphenylalanine inhibit in vivo serotonin release in the prefrontal cortex and hippocampus in a rat model of Parkinson’s disease. J Neurosci 30(6):2356–2364

    Article  CAS  PubMed  Google Scholar 

  142. Navailles S et al (2011) Chronic L-DOPA therapy alters central serotonergic function and L-DOPA-induced dopamine release in a region-dependent manner in a rat model of Parkinson’s disease. Neurobiol Dis 41(2):585–590

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the EU COST Action CM1103 “Structure-based drug design for diagnosis and treatment of neurological diseases: dissecting and modulating complex function in the monoaminergic systems of the brain” for supporting their international collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe De Deurwaerdère .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Deurwaerdère, P., Drutel, G., Di Giovanni, G. (2018). Pharmacological Analysis in Favour of a Physiological Role for the Constitutive Activity of 5-HT2A Receptors in Learning. In: Guiard, B., Di Giovanni, G. (eds) 5-HT2A Receptors in the Central Nervous System. The Receptors, vol 32. Humana Press, Cham. https://doi.org/10.1007/978-3-319-70474-6_1

Download citation

Publish with us

Policies and ethics