Pore-water evolution and solute-transport mechanisms in Opalinus Clay at Mont Terri and Mont Russelin (Canton Jura, Switzerland)

Chapter
Part of the Swiss Journal of Geosciences Supplement book series (SWISSGEO, volume 5)

Abstract

Data pertinent to pore-water composition in Opalinus Clay in the Mont Terri and Mont Russelin anticlines have been collected over the last 20 years from longterm in situ pore-water sampling in dedicated boreholes, from laboratory analyses on drillcores and from the geochemical characteristics of vein infills. Together with independent knowledge on regional geology, an attempt is made here to constrain the geochemical evolution of the pore-waters. Following basin inversion and the establishement of continental conditions in the late Cretaceous, the Malm limestones acted as a fresh-water upper boundary leading to progressive out-diffusion of salinity from the originally marine pore-waters of the Jurassic low-permeability sequence. Model calculations suggest that at the end of the Palaeogene, pore-water salinity in Opalinus Clay was about half the original value. In the Chattian/Aquitanian, partial evaporation of sea-water occurred. It is postulated that brines diffused into the underlying sequence over a period of several Myr, resulting in an increase of salinity in Opalinus Clay to levels observed today. This hypothesis is further supported by the isotopic signatures of SO 4 2– and 87Sr/86Sr in current pore-waters. These are not simple binary mixtures of sea and meteoric water, but their Cl and stable water-isotope signatures can be potentially explained by a component of partially evaporated sea-water. After the reestablishment of fresh-water conditions on the surface and the formation of the Jura Fold and Thrust Belt, erosion caused the activation of aquifers embedding the low-permeability sequence, leading to the curved profiles of various pore-water tracers that are observed today. Fluid flow triggered by deformation events during thrusting and folding of the anticlines occurred and is documented by infrequent vein infills in major fault structures. However, this flow was spatially focussed and of limited duration and so did not markedly affect the bulk pore-water.

Keywords

Geochemical evolution Pore-water tracers Sea-water evaporation Diffusion Fluid flow Veins Nuclear waste disposal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Paul Wersin, Albert Matter (both Uni. Bern) and Andreas Gautschi (Nagra) for useful discussions. Detailed and constructive reviews by A. Bath (Intellisci, UK) and J. M. Matray (IRSN, France) helped to improve the manuscript.

References

  1. Afconsult. (2012). HA-experiment: Hydraulic database phases 1-16. Mont Terri Technical Note, TN 2010-74, 20 pp. Federal Office of Topography (swisstopo), Wabern. www.mont-terri.ch.
  2. Aubry, M. P., Van Couvering, J. A., Christie-Blick, N., Landing, E., Pratt, B. R., Owen, D. E., et al. (2009). Terminology of geological time: Establishment of a community standard. Stratigraphy, 6, 100–105.Google Scholar
  3. Balderer, W., Pearson, F. J., & Soreau, S. (1991). Sulphur and oxygen isotopes in sulphate and sulphide. In F. J. Pearson, W. Balderer, H. H. Loosli, B. E. Lehmann, A. Matter, T. Peters, H. Schmassmann & A. Gautschi (Eds.), Applied isotope hydrology: A case study in northern Switzerland (pp. 227–242). Studies in Environmental Science, vol. 43. Amsterdam: Elsevier.Google Scholar
  4. Becker, A. (2000). The Jura Mountains—An active foreland fold-andthrust belt? Tectonophysics, 321, 381–406.Google Scholar
  5. Becker, D., & Berger, J. P. (2004). Paleogeography of the Swiss Molasse Basin and the Upper Rhine Graben during the Late Burdigalian and Langhian. Courier Forschungsinstitut Senckenberg, 249, 1–13.Google Scholar
  6. Berger, J. P. (1996). Cartes paléogéographiques-palinspastiques du bassin molassique suisse (Oligocène inférieur-Miocène moyen). Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 202, 1–44.Google Scholar
  7. Berger, J. P., Reichenbacher, B., Becker, D., Grimm, M., Grimm, K., Picot, L., et al. (2005). Paleogeography of the Upper Rhine Graben (URG) and the Swiss Molasse Basin (SMB) from Eocene to Pliocene. International Journal of Earth Sciences, 94, 697–710.Google Scholar
  8. Bock H., Dehandschutter, B., Martin, C. D., Mazurek, M., de Haller, A., Skoczylas, F., et al. (2010). Self-sealing of fractures in argillaceous formations in context with the geological disposal of radioactive waste. OECD/NEA Report, 6184, 310 pp. OECD, Paris, France. www.oecdbookshop.org.
  9. Bossart, P., Bernier, F., Birkholzer, J., Bruggeman, C., Connolly, P., Dewonck, S., Fukaya, M., Herfort, M., Jensen, M., Matray, J-M., Mayor, J. C., Moeri, A., Oyama, T., Schuster, K., Shigeta, N., Vietor, T., & Wieczorek, K. (2017). Mont Terri rock laboratory, 20 years of research: introduction, site characteristics and overview of experiments. Swiss Journal of Geosciences, 110.  https://doi.org/10.1007/s00015-016-0236-1 (this issue).
  10. Bossart, P., & Thury, M. (2007). Research in the Mont Terri rock laboratory: Quo vadis? Physics and Chemistry of the Earth, 32, 19–31.Google Scholar
  11. Bureau Technique Norbert. (1993). Tunnel du Mont Russelin—Profil en long géologique. Unpublished document.Google Scholar
  12. Carslaw, H. S., & Jaeger, J. C. (1973). Conduction of heat in solids (2nd ed.). Oxford: Clarendon Press.Google Scholar
  13. Clark, I., & Fritz, P. (1999). Environmental isotopes in hydrogeology (2nd printing, 328 pp.). Boca Raton: CRC Press.Google Scholar
  14. Claypool, G. E., Holser, W. T., Kaplan, I. R., Sakai, H., & Zak, I. (1980). The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology, 28, 199–260.Google Scholar
  15. Cohen, K. M., Finney, S. C., Gibbard, P. L., & Fan, J. X. (2013). The ICS international chronostratigraphic chart. Episodes, 36, 199–204.Google Scholar
  16. Cox, S. F. (2005). Coupling between deformation, fluid pressure, and fluid flow in ore producing hydrothermal systems at depth in the crust. Economic Geology, 100, 39–75.Google Scholar
  17. Craig, H., & Gordon, L. I. (1965). Deuterium and oxygen-18 variations in the ocean and marine atmosphere. In E. Tongiorgi (Ed.), Stable isotopes in oceanographic studies and paleotemperatures (pp. 161–182). Pisa: Consiglio Nazionale delle Ricerche, Laboratorio de Geologia Nucleare.Google Scholar
  18. Craig, H., Gordon, L., & Horibe, Y. (1963). Isotopic exchange effects in the evaporation of water. Journal of Geophysical Research, 68, 5079–5087.Google Scholar
  19. De Haller, A., Mazurek, M., Spangenberg, J., & Möri, A. (2014). SF (Self-sealing of faults and paleo-fluid flow): Synthesis report. Mont Terri Technical Report, TR 08-02, 63 pp. Federal Office of Topography (swisstopo), Wabern, Switzerland. www.mont-terri.ch.
  20. Fisher, Q., Kets, F., & Crook, A. (2013). Self-sealing of faults and fractures: Evidence from the petroleum industry. Nagra Arbeitsbericht, NAB 13-06, 231 pp. Nagra, Wettingen. www.nagra.ch.
  21. Freivogel, M., & Huggenberger, P. (2003). Modellierung bilanzierter Profile im Gebiet Mont Terri—La Croix (Kanton Jura). In P. Heitzmann & J. P. Tripet (Eds.), Mont Terri project—Geology, paleohydrology and stress field of the Mont Terri region (pp. 7–44). Reports of the Federal Office for Water and Geology, Geology Series, No. 4. Federal Office of Topography (swisstopo), Wabern. www.mont-terri.ch.
  22. Gomez, J. J., Canales, M. L., Ureta, S., & Goy, A. (2009). Palaeoclimatic and biotic changes during the Aalenian (Middle Jurassic) at the southern Laurasian Seaway (Basque-Cantabrian Basin, northern Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 275, 14–27.Google Scholar
  23. Gonfiantini, R. (1965). Effetti isotopici nell’evaporazione di acque salate. Atti della Società Toscana di Scienze Naturali, Serie A, 72, 550–569.Google Scholar
  24. Gonfiantini, R. (1986). Environmental isotopes in lake studies. In P. Fritz & J. C. Fontes (Eds.), Handbook of environmental isotope geochemistry (Vol. 2, pp. 113–168)., The terrestrial environment, B Burlington: Elsevier.Google Scholar
  25. Hansen, J., Sato, M., Russell, G., & Kharecha, P. (2013). Climate sensitivity, sea level and atmospheric carbon dioxide. Philosophical transactions of the Royal Society A, 371, 20120294.Google Scholar
  26. Huneau, F. (2000). Fonctionnement hydrogéologique et archive paléoclimatique d’un aquifère profond méditerranéen. Ph.D. dissertation, University of Avignon, Avignon.Google Scholar
  27. Kissling, D. (1974). L’Oligocène de l’extrémité occidentale du bassin molassique suisse. Stratigraphie et aperçu molassique. Ph.D dissertation, Université de Genève, Genève.Google Scholar
  28. Koroleva, M., Alt-Epping, P., & Mazurek, M. (2011). Large-scale tracer profiles in a deep claystone formation (Opalinus Clay at Mont Russelin, Switzerland): Implications for solute transport processes and transport properties of the rock. Chemical Geology, 280, 284–296.Google Scholar
  29. Korte, C., Hesselbo, S. P., Ullmann, C. V., Dietl, G., Ruhl, M., Schweigert, G., et al. (2015). Jurassic climate mode governed by ocean gateway. Nature Communications.  https://doi.org/10.1038/ncomms10015.
  30. Kuhlemann, J., & Kempf, O. (2002). Post-Eocene evolution of the North Alpine Foreland Basin and its response to Alpine tectonics. Sedimentary Geology, 152, 45–78.Google Scholar
  31. Lerouge, C., Gaboreau, S., Blanc, P., Guerrot, C., Haas, H., Jean-Prost, V., et al. (2010). PC experiment: Mineralogy and geochemistry of cores of the BPC935 borehole. Mont Terri Technical Note, TN 2010-05, 46 pp. Federal Office of Topography (swisstopo), Wabern. www.mont-terri.ch.
  32. Lichtner, P. C. (2007). FLOTRAN Users Manual: Two-phase nonisothermal coupled thermal-hydrologic-chemical (THC) reactive flow and transport code, Version 2. LANL report, LA-UR-01-2349, 173 pp. Los Alamos National Laboratory, Los Alamos, NM.Google Scholar
  33. Lloyd, R. M. (1966). Oxygen isotope enrichment of sea water by evaporation. Geochimica et Cosmochimica Acta, 30, 80–814.Google Scholar
  34. Lorenz, G. & Vogt, T. (2014). WS-I Experiment—Chemical analyses of BBB-3 water samples collected before pressure build up and during constant rate withdrawal hydro-testing. Mont Terri Technical Note, TN 2013-89, 4 pp. Federal Office of Topography (swisstopo), Wabern. www.mont-terri.ch.
  35. Marschall, P., Croisé, J., Schlickenrieder, L., Boisson, J. Y., Vogel, P., & Yamamoto, S. (2003). Synthesis of hydrogeological investigations at the Mont Terri site (phases 1 to 5). Mont Terri Technical Report, TR 2001-02, 116 pp. Federal Office of Topography (swisstopo), Wabern. www.mont-terri.ch.
  36. Marschall, P., Trick, T., Lanyon, G. W., Delay, J., & Shao, H. (2008). Hydro-mechanical evolution of damaged zones around a microtunnel in a claystone formation of the Swiss Jura Mountains. In 42nd US Rock Mechanics Symposium (USRMS), American Rock Mechanics Association.Google Scholar
  37. Mazurek, M., Alt-Epping, P., Bath, A., Gimmi, T., & Waber, H. N. (2009). Natural tracer profiles across argillaceous formations: The CLAYTRAC project. OECD/NEA Report, 6253, 361 pp. OECD Publishing, Paris. www.oecdbookshop.org.
  38. Mazurek, M., Alt-Epping, P., Bath, A., Gimmi, T., Waber, H. N., Buschaert, S., et al. (2011). Natural tracer profiles across argillaceous formations. Applied Geochemistry, 26, 1035–1064.Google Scholar
  39. Mazurek, M., Hurford, A. J., & Leu, W. (2006). Unravelling the multi-stage burial history of the Swiss Molasse Basin: Integration of apatite fission track, vitrinite reflectance and biomarker isomerisation analysis. Basin Research, 18, 27–50.Google Scholar
  40. Mazurek, M., Oyama, T., Wersin, P., & Alt-Epping, P. (2015). Porewater squeezing from indurated shales. Chemical Geology, 400, 106–121.Google Scholar
  41. McArthur, J. M., Howarth, R. J., & Shields, G. A. (2012). Strontium Isotope Stratigraphy. The Geologic Time Scale, 1, 127–144.Google Scholar
  42. Meier, D. & Mazurek, M. (2011). Ancillary rock and pore-water studies on drillcores from northern Switzerland. Nagra Arbeitsbericht, NAB 10-21, 60 pp. Nagra, Wettingen. www.nagra.ch.
  43. Meier, P. M., Trick, T., Blümling, P., & Volckaert, G. (2002). Selfhealing of fractures within the EDZ at the Mont Terri Rock Laboratory: Results after one year of experimental work. In N. Hoteit, K. Su, M. Tijani, & J. F. Shao (Eds.), Proceedings of international workshop on geomechanics, hydromechanical and thermohydro-mechanical behaviour of deep argillaceous rocks: Theory and experiment (pp. 267–274). Paris, France.Google Scholar
  44. Mojon, P. O., Engesser, B., Berger, J. P., Bucher, H., & Weidmann, M. (1985). Sur l’âge de la Molasse d’eau douce inférieure de Boudry, Neuchâtel. Eclogae Geologicae Helvetiae, 78, 631–667.Google Scholar
  45. Muir-Wood, R., & King, G. C. P. (1993). Hydrological signatures of earthquake strain. Journal of Geophysical Research, 98, 22035–22068.Google Scholar
  46. Müller, H., & Leupin, O. (2012). WS-H (Investigation of wet spots): Observation, first experimental results, and a short presentation of possible hypotheses regarding the origin of these waters. Mont Terri Technical Note, TN 2012-96, 49 pp. Federal Office of Topography (swisstopo), Wabern. www.mont-terri.ch.
  47. Nussbaum, C., Bossart, P., Amann, F., & Aubourg, C. (2011). Analysis of tectonic structures and excavation induced fractures in the Opalinus Clay, Mont Terri underground rock laboratory (Switzerland). Swiss Journal of Geosciences, 104, 187–210.Google Scholar
  48. Nussbaum, C., Kloppenburg, A., Caër, T., & Bossart, P. (2017). Tectonic evolution around the Mont Terri rock laboratory, northwestern Swiss Jura: Constraints from kinematic forward modelling. Swiss Journal of Geosciences, 110 (this issue).Google Scholar
  49. Nussbaum, C., Meier, O., Masset, O., & Badertscher, N. (2006). Selfsealing of fault (SF) Experiment—Drilling of resin impregnated boreholes. Mont Terri Technical Note, TN 2006-22, 36 pp. Federal Office of Topography (swisstopo), Wabern. www.montterri.ch.
  50. O’Neil, J. R., Clayton, R. N., & Mayeda, T. K. (1969). Oxygen isotope fractionation in divalent metal carbonates. Journal of Chemistry and Physics, 51, 5547–5558.Google Scholar
  51. Parkhurst, D. L., & Appelo, C. A. J. (2013). Description of input and examples for PHREEQC version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Techniques and Methods, Book 6, 497. http://pubs.usgs.gov/tm/06/a43.
  52. Pearson, F. J., Arcos, D., Bath, A., Boisson, J. Y., Fernandez, A. M., Gäbler, H. E., et al. (2003). Mont Terri project—Geochemistry of water in the Opalinus Clay formation at the Mont Terri Rock Laboratory (319 pp.). Reports of the Federal Office for Water and Geology, Geology Series, No. 5. Federal Office of Topography (swisstopo), Wabern. www.mont-terri.ch.
  53. Pearson, F. J., Balderer, W., Loosli, H. H., Lehmann, B. E., Matter, A., Peters, T., et al. (1991). Applied Isotope Hydrogeology—A case study in northern Switzerland. Amsterdam: Elsevier.Google Scholar
  54. Pfirter, U., Antenen, M., Heckendorn, W., Burkhalter, R. M., Gürler, B., & Krebs, D. (1996). Geologischer Atlas der Schweiz 1:25’000, Blatt Moutier. Federal Office of Topography (swisstopo), Wabern. www.map.geo.admin.ch.
  55. Philippot, A. C., Michelot, J. L., & Marlin, C. (2000). A paleohydrogeological study of the Mol site, Belgium (PHYMOL project). Rapport spécifique no. 3: Analyse des isotope et des gaz nobles. European Commission Report, DOC RTD/55/2000-FR.Google Scholar
  56. Picot, L., Becker, D., Cavin, L., Pirkenseer, C., Lapaire, F., Rauber, G., et al. (2008). Sédimentologie et paléontologie des paléoenvironnements côtiers rupéliens de la Molasse marine rhénane dans le Jura suisse. Swiss Journal of Geosciences, 101, 483–513.Google Scholar
  57. Pierre, C. (1989). Sedimentation and diagenesis in restricted marine basins. In P. Fritz & J. C. Fontes (Eds.), Handbook of environmental isotope geochemistry (Vol. 3A, pp. 257–315). Burlington: Elsevier.Google Scholar
  58. Pirkenseer, C., Berger, J. P., & Reichenbacher, B. (2013). The position of the Rupelian/Chattian boundary in the southern Upper Rhine Graben based on new records of microfossils. Swiss Journal of Geosciences, 106, 291–301.Google Scholar
  59. Pirkenseer, C., Spezzaferi, S., & Berger, J. P. (2010). Palaeoecology and biostratigraphy of the Paleogene Foraminifera from the southern Upper Rhine Graben and the influence of reworked planktonic Foraminifera. Palaeontographica, Abteilung A: Palaeozoology-Stratigraphy, 293, 1–93.Google Scholar
  60. Pirkenseer, C., Spezzaferi, S., & Berger, J. P. (2011). Reworked microfossils as a paleogeographic tool. Geology, 39, 843–846.Google Scholar
  61. Raiswell, R., & Canfield, D. E. (2012). The iron biogeochemical cycle past and present. Geochemical Perspectives, 1, 1–220.Google Scholar
  62. Rübel, A. P., Sonntag, C., Lippmann, J., Pearson, F. J., & Gautschi, A. (2002). Solute transport in formations of very low permeability: Profiles of stable isotope and dissolved noble gas contents of pore water in the Opalinus Clay, Mont Terri, Switzerland. Geochimica et Cosmochimica Acta, 66, 1311–1321.Google Scholar
  63. Stute, M., & Schlosser, P. (2000). Atmospheric noble gases. In P. G. Cook & A. L. Herczeg (Eds.), Environmental tracers in subsurface hydrology (pp. 349–377). Boston: Kluwer.Google Scholar
  64. Thury, M., & Bossart, P. (1999). The Mont Terri rock laboratory, a new international research project in a Mesozoic shale formation, in Switzerland. Engineering Geology, 52, 347–359.Google Scholar
  65. Van Loon, L. R., Baeyens, B., & Bradbury, M. H. (2005a). Diffusion and retention of sodium and strontium in Opalinus clay: Comparison of sorption data from diffusion and batch sorption measurements, and geochemical calculations. Applied Geochemistry, 20, 2351–2363.Google Scholar
  66. Van Loon, L. R., Müller, W., & Iijima, K. (2005b). Activation energies of the self-diffusion of HTO, 22Na+ and 36Cl in a highly compacted argillaceous rock (Opalinus Clay). Applied Geochemistry, 20, 961–972.Google Scholar
  67. Van Loon, L. R., & Soler, J. M. (2003). Diffusion of HTO, 36Cl, 125I and 22Na+ in Opalinus Clay: Effect of confining pressure, sample orientation, sample depth and temperature. Nagra Technical Report, 03-07, 119 pp. Nagra, Wettingen. www.nagra.ch.
  68. Vinsot, A., Appelo, C. A. J., Cailteau, C., Wechner, S., Pironon, J., De Donato, P., et al. (2008). CO2 data on gas and pore water sampled in situ in the Opalinus Clay at the Mont Terri rock laboratory. Physics and Chemistry of the Earth, 33, S54–S60.Google Scholar
  69. Vinsot, A., Appelo, C. A. J., Lundy, M., Wechner, S., Lettry, Y., Lerouge, C., et al. (2014). In situ diffusion test of hydrogen gas in the Opalinus Clay. Geological Society, London, Special Publications, 400(1), 563–578.Google Scholar
  70. Vogt, T. (2013). WS-I Experiment—Outflow measurements and hydrochemical analyses. Mont Terri Technical Note, TN 2013-01, 10 pp. Federal Office of Topography (swisstopo), Wabern. www.mont-terri.ch.
  71. Wang, C. Y., & Manga, M. (2010). Earthquakes and water (225 pp). Berlin Heidelberg: Springer.Google Scholar
  72. Weidmann, M., Engesser, B., Berger, J. P., Mojon, P. O., Ginsburg, L., Becker, D., et al. (2014). Paléontologie et biostratigraphie de la Molasse de l’Oligocène et du Miocène basal du Talent et d’autres localités du Plateau vaudois (Suisse). Revue de Paléobiologie (Genève), 33, 463–531.Google Scholar
  73. Wersin, P., Leupin, O. X., Mettler, S., Gaucher, E. C., Mäder, U., De Cannière, P., et al. (2011). Biogeochemical processes in a clay formation in situ experiment: Part A—Overview, experimental design and water data of an experiment in the Opalinus Clay at the Mont Terri Underground Research Laboratory, Switzerland. Applied Geochemistry, 26, 931–953.Google Scholar
  74. Zachos, J. C., Dickens, G. R., & Zeebe, R. E. (2008). An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451, 279–283.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Geological SciencesUniversity of BernBernSwitzerland
  2. 2.Earth and Environmental SciencesUniversity of GenevaGenevaSwitzerland

Personalised recommendations