Skip to main content

Comparative study of methods to estimate hydraulic parameters in the hydraulically undisturbed Opalinus Clay (Switzerland)

  • Chapter
  • First Online:

Part of the book series: Swiss Journal of Geosciences Supplement ((SWISSGEO,volume 5))

Abstract

The deep borehole (DB) experiment gave the opportunity to acquire hydraulic parameters in a hydraulically undisturbed zone of the Opalinus Clay at the Mont Terri rock laboratory (Switzerland). Three methods were used to estimate hydraulic conductivity and specific storage values of the Opalinus Clay formation and its bounding formations through the 248 m deep borehole BDB-1: application of a Poiseuilletype law involving petrophysical measurements, spectral analysis of pressure time series and in situ hydraulic tests. The hydraulic conductivity range in theOpalinusClay given by the first method is 2 × 10–14–6 × 10–13 m s–1 for a cementation factor ranging between 2 and 3. These results show low vertical variability whereas in situ hydraulic tests suggest higher values up to 7 × 10–12 m s–1. Core analysis provides economical estimates of the homogeneous matrix hydraulic properties but do not account for heterogeneities at larger scale such as potential tectonic conductive features. Specific storage values obtained by spectral analysis are consistent and in the order of 10−6 m–1, while formulations using phase shift and gain between pore pressure signals were found to be inappropriate to evaluate hydraulic conductivity in the Opalinus Clay.The values obtained are globally in good agreementwith the ones obtained previously at the rock laboratory.

Editorial handling: P. Bossart and A. G. Milnes.

This is paper #4 in the Mont Terri Special Issue of the Swiss Journal of Geosciences (see Bossart et al. 2017, Table 3 and Fig. 7).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   74.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ababou, R., Fatmi, H., Matray, J. M., Nussbaum, C., & Bailly, D. (2012). Statistical analyses of pore pressure signals in claystone during excavation works at the Mont Terri Underground Research Laboratory. In R. Abdel Rahman (Ed.), Radioactive waste (pp. 373–430). Publisher: InTech.

    Google Scholar 

  • Altinier, M. V. (2006). Etude de la composition isotopique des eaux porales de l’argilite de Tournemire: intercomparaison des méthodes de mesure et relations avec les paramètres pétrophysiques. Ph. D. dissertation, Université Paris-Sud, Orsay, France, pp. 200

    Google Scholar 

  • Archie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the American Institute of Mining Metallurgical, and Petroleum Engineers, 146, 54–62.

    Google Scholar 

  • Bailly, D., Matray, J. M., & Ababou, R. (2014). Temporal behavior of a ventilated claystone at the Tournemire URL: Cross-spectral analyses focused on daily harmonics. Engineering Geology, 183, 137–158.

    Google Scholar 

  • Bailly, D., & Matray, J.-M. (2015). LP-A Experiment: Phase 20, Statistical analysis of time series acquired in the EZ-B Niche and at the Main fault. Mont Terri Technical Note, TN 2014-59, 79 pp. Federal Office of Topography (swisstopo), Wabern, Switzerland. www.mont-terri.ch.

  • Barker, J. A. (1988). A generalized radial-flow model for hydraulic tests in fractured rock. Water Resources Research, 24(10), 1796–1804.

    Google Scholar 

  • Beauheim, R. L., Roberts, R. M., & Avis, J. D. (2004). Well testing in fractured media: flow dimensions and diagnostic plots. Journal of Hydraulic Research, 42, 69–76.

    Google Scholar 

  • Beauheim, R. L., & Roberts, R. M. (2004). Well-test analysis techniques developed for the Waste Isolation Pilot Plant. In Proceedings of the 66th EAGE Conference and Exhibition, Paris, France.

    Google Scholar 

  • Blaesi, H.-R., Peters, T. J., & Mazurek, M. (1991). Der Opalinus-Ton des Mt. Terri (Kanton Jura): Lithologie, Mineralogie und physiko-chemische Gesteinsparameter. Nagra Interner Bericht, (pp. 90–60). Nagra, Wettingen, Switzerland. www.nagra.ch.

  • Boldt-Leppin, B. E. J., & Hendry, J. (2003). Application of Harmonic Analysis of Water Levels to Determine Vertical Hydraulic Conductivities in Clay-Rich Aquitards. Ground Water, 41(4), 514–522.

    Google Scholar 

  • Bossart, P., & Thury, M. (2008). Mont Terri Rock Laboratory. Project, Programme 1996 to 2007 and Results. Reports of the Swiss Geological Survey, No. 3, p 445. Federal Office of Topography (swisstopo), Wabern, Switzerland. www.mont-terri.ch.

  • Bossart, P., Bernier, F., Birkholzer, J., Bruggeman, C., Connolly, P., Dewonck, S., Fukaya, M., Herfort, M., Jensen, M.,Matray, J-M., Mayor, J. C., Moeri, A., Oyama, T., Schuster, K., Shigeta, N., Vietor, T., & Wieczorek, K. (2017). Mont Terrirock laboratory, 20 years of research: introduction, site characteristics and overview of experiments. Swiss Journal of Geosciences, 110. https://doi.org/10.1007/s00015-016-0236-1 (this issue).

  • Boulin, P. F., Bretonnier, P., Gland, N., & Lombard, J. M. (2012). Contribution of the steady state method to water permeability measurement in very low permeability porous media. Oil and Gas Science and Technology, 67, 387–401.

    Google Scholar 

  • Boving, T. B., & Grathwohl, P. (2001). Tracer diffusion coefficients in sedimentary rocks: correlation between porosity and hydraulic conductivity. Journal of Contaminant Hydrogeology, 53(1), 85–100.

    Google Scholar 

  • Bredehoeft, J. D. (1967). Response of well-aquifer systems to Earth tides. Journal of Geophysical Research, 72(12), 3075–3087.

    Google Scholar 

  • Bredehoeft, J. D., & Papadopoulos, S. S. (1980). A method for determining the hydraulic properties of tight formations. Water Resources Research, 16(1), 233–238.

    Google Scholar 

  • Butler, J. J. (1998). The design and performance, and analysis of slug tests (p. 252). Boca Raton: Lewis Publishers (imprint of CRC Press LLC).

    Google Scholar 

  • Chapuis, R. P., & Aubertin, M. (2003). Predicting the Coefficient of Permeability of Soils Using the Kozeny-Carman Equation (p. 35). Montréal: Ecole Polytechnique de Montréal.

    Google Scholar 

  • Clauer, N., Techer, I., Nussbaum, C., & Laurich, B. (2017). Geochemical signature of paleofluids in microstructures from ‘‘Main Fault’’ in the Opalinus Clay of the Mont Terri rock laboratory, Switzerland. Swiss Journal of Geosciences, 110. https://doi.org/10.1007/s00015-016-0253-0 (this issue).

  • Cooper, H. H., Bredehoeft, J. D., & Papadopulos, I. S. (1967). Response of a finite-diameter well to an instantaneous charge of water. Water Resource Research, 3, 263–269.

    Google Scholar 

  • Croisé, J., Schilckenrieder, L., Marschall, P., Boisson, J. Y., Vogel, P., & Yamamoto, S. (2004). Hydrogeological investigations in a low permeability claystone formation: the Mont Terri Rock Laboratory. Physics and Chemistry of the Earth, 29, 3–15.

    Google Scholar 

  • Cutillo, P. A., & Bredehoeft, J. D. (2011). Estimating aquifer properties from the water level response to earth tides. Ground Water, 49(4), 600–610.

    Google Scholar 

  • Doodson A. T., & Warburg, H. D. (1941). Admiralty manual of tides. Her Majesty’s Stationary Office, London, xii, p 270.

    Google Scholar 

  • Fatmi, H. (2009). Méthodologie d’analyse des signaux et caractérisation hydrogéologique: application aux chroniques de données obtenues aux laboratoires souterrains du Mont Terri, Tournemire et Meuse/Haute-Marne. Ph.D. dissertation (p. 249). Toulouse: Université de Toulouse.

    Google Scholar 

  • Fatmi, H., Ababou, R., & Matray, J.-M. (2008). Statistical preprocessing analyses of hydrometeorological time series in a geological clay site (methodology and first results for Mont Terri’s PP experiment). Journal of Physical Chemistry Letters A/B/C, 33, S14–S23.

    Google Scholar 

  • Fernàndez-Garcia, D., Gómez-Hernández, J. J., & Mayor, J. C. (2007). Estimating hydraulic conductivity of the Opalinus Clay at the regional scale: Combined effect of desaturation and EDZ. Physics and Chemistry of the Earth, Parts A/B/C, 32(8), 639–645.

    Google Scholar 

  • Fierz, T., & Rösli, U. (2014). Mont Terri DB Experiment: Installation of a 7-interval multi-packer system into borehole BDB-1. Instrumentation Report. Mont Terri Technical Note, TN 20414-23. p 37. Federal Office of Topography (swisstopo), Wabern, Switzerland. www.mont-terri.ch.

  • Gautschi, A. (2001). Hydrogeology of a fractured shale (Opalinus Clay): Implications for the deep disposal of radioactive wastes. Hydrogeology Journal, 9, 97–107.

    Google Scholar 

  • Horseman, S. T., Higgo, J. J. W., Alexander, J., & Harrington, J. F. (1996). Water, Gas and Solute Movement Trough Argillaceous Media. Nuclear Energy Agency Rep., CC-96/1, OECD, Paris, p 306.

    Google Scholar 

  • Hostettler, B., Reisdorf, A. G., Jaeggi, D., Deplazes, G., Bläsi, H.-R., Morard, A., Feist-Burkhardt, S., Waltschew, A., Dietze, V., & Menkveld-Gfeller, U. (2017). Litho- and biostratigraphy of the Opalinus Clay and bounding formations in the Mont Terri rock laboratory (Switzerland). Swiss Journal of Geosciences, 110. https://doi.org/10.1007/s00015-016-0250-3 (this issue).

  • Jiang, Z., Martiethoz, G., Taulis, M., & Cox, M. (2013). Determination of vertical hydraulic conductivity of aquitards in a multilayered leaky system using water-level signals in adjacent aquifers. Journal of Hydrology, 500, 170–182.

    Google Scholar 

  • Johns, R. T., Vomvoris, S. G., & Löw, S. (1995). Review of hydraulic field tests in the Opalinus Clay of Northern Switzerland. Nuclear Energy Agency: Hydraulic and hydrochemical characterisation of argillaceous rocks.

    Google Scholar 

  • Kell, G. S. (1975). Volume properties of ordinary water. In R. C. Weast (Ed.), Handbook of chemistry and physics (56th ed.). Cleveland: CRC Press.

    Google Scholar 

  • Keller, C. K., Van der Kamp, G., & Cherry, J. A. (1989). A multiscale study of the permeability of a thick clayey till. Water Resources Research, 25(11), 2299–2317.

    Google Scholar 

  • Kostek, S., Schwartz, L., & Johnson, D. (1992). Fluid permeability in porous media: Comparison of electrical estimates with hydrodynamical calculations. Physical Review B, 45(1), 186–194.

    Google Scholar 

  • Lavanchy, J. M., & Mettier, R. (2012). HA (Hydrogeological analysis) Experiment: Hydraulic database, Phases 1-16, Version 1.0. Mont Terri Technical Note, TN 2010-74, p 22. Federal Office of Topography (swisstopo), Wabern, Switzerland. www.mont-terri.ch.

  • Marschall, P., Horseman, S., & Gimmi, T. (2005). Characterisation of gas transport properties of the Opalinus Clay, a potential host rock formation for radioactive waste disposal. Oil and Gas Science and Technology, 60(1), 121–139.

    Google Scholar 

  • Matray, J.-M., Savoye, S., & Cabrera, J. (2007). Desaturation and structure relationships around drifts excavated in the wellcompacted Tournemire’s argillite (Aveyron, France). Engineering Geology, 90, 1–16.

    Google Scholar 

  • Mazurek, M., Hurford, A., & Leu, W. (2006). Unravelling the multistage burial history of the Swiss Molasse Basin: integration of apatite fission track, vitrinite reflectance and biomarker isomerisation analysis. Basin Research, 18, 27–50.

    Google Scholar 

  • Mazurek, M., Alt-Epping, P., Bath, A., Gimmi, T., & Waber, H. N. (2009). Natural tracer profiles across argillaceous formations: The CLAYTRAC Project (p. 365). Paris: Nuclear Energy Agency report, OECD.

    Google Scholar 

  • Mejías, M., Renard, P., & Glenz, D. (2009). Hydraulic 652 testing of low-permeability formations: A case study in the granite of Cadalso de los Vidrios, Spain. Engineering Geology, 107, 88–107.

    Google Scholar 

  • Melchior, P. (1978). The tides of the planet Earth (p. 609). Oxford: Pergamon Press.

    Google Scholar 

  • Mercer, J. W., Pinder, G. F., & Donalson, I. G. (1975). A Galerkinfinite element analysis of the hydrothermal system at Wairakei, New-Zealand. Journal of Geophysical Research, 80, 2608–2621.

    Google Scholar 

  • Merritt, M. L. (2004). Estimating hydraulic properties of the Floridan aquifer system by analysis of earth-tide, ocean-tide, and barometric effects. Collier and Hendry Counties, Florida. U.S. Geological Survey Water-resources investigations Report 03-4267, p 70.

    Google Scholar 

  • Monnier, G., Stengel, P., & Fies, J. C. (1973). Une méthode de mesure de la densité apparente de petits agglomérats terreux. Application à l’analyse de système de porosité du sol. Annales Agronomiques, 24, 533–545.

    Google Scholar 

  • Muñoz, J. J., Lloret, A., & Alonso, E. (2003). Laboratory Report: Characterization of hydraulic properties under saturated and non saturated conditions. Project Deliverable, 4.

    Google Scholar 

  • Nagra (2002). Projekt Opalinuston: Konzept für die Anlage und den Betrieb eines geologischen Tiefenlagers: Entsorgungsnachweis für abgebrannte Brennelemente, verglaste hochaktive sowie langlebige mittelaktive Abfälle. Nagra Technical Report, 02-02, p 24. Nagra, Wettingen, Switzerland. www.nagra.ch.

  • Neuzil, C. E. (1982). On conducting the modified ‘slug’ test in tight formations. Water Resources Research, 18(2), 439–441.

    Google Scholar 

  • Neuzil, C. E. (1994). How permeable are clays and shales? Water Resources Research, 30(2), 145–150.

    Google Scholar 

  • Neuzil, C. E. (2000). Osmotic generation of ‘‘anomalous’’ fluid pressures in geological environments. Nature, 403, 182–184.

    Google Scholar 

  • Nussbaum, C., & Bossart, P. (2004). Compilation of K-values from packer tests in the Mont Terri rock laboratory. Mont Terri Technical Note, TN 2005-10, p 29. Federal Office of Topography (swisstopo), Wabern, Switzerland.

    Google Scholar 

  • Nussbaum, C., Bossart, P., Amann, F., & Aubourg, C. (2011). Analysis of tectonic structures and excavation induced fractures in the Opalinus Clay, Mont Terri underground rock laboratory (Switzerland). Swiss Journal of Geosciences, 104, 187–210.

    Google Scholar 

  • Nussbaum, C., Kloppenburg, A., Caer, T. & Bossart, P. (2017). Tectonic evolution of the Mont Terri anticline based on forward modelling. Swiss Journal of Geosciences, 110. https://doi.org/10.1007/s00015-016-0248-x (this issue).

  • Pape, H., Clauser, C., & Iffland, J. (1999). Permeability prediction based on fractal pore-space geometry. Geophysics, 64, 1447–1460.

    Google Scholar 

  • Pearson, F. J., Arcos, D., Boisson, J-Y., Fernández, A. M., Gäbler, H.E., Gaucher, E., Gautschi, A., Griffault, L., Hernán, P., & Waber, N. (2003). Mont Terri Project-Geochemistry of water in the Opalinus Clay Formation at the Mont Terri Rock Laboratory. Reports of the Swiss Geological Survey, No. 5, p 143. Federal Office of Topography (swisstopo), Wabern, Switzerland. www.mont-terri.ch.

  • Peters, M., Mazurek, M., Jaeggi, D., & Mu¨ller, H. (2011). WS-H Experiment: Heterogeneities in the sandy facies of Opalinus Clay on a scale on millimetres to centimeters. Mont Terri Technical Note, TN 2010-76, p 66. Federal Office of Topography (swisstopo), Wabern, Switzerland.

    Google Scholar 

  • Terzaghi, V. K. (1936). The sheering resistance of saturated soils and the angle between the planes of shear. First International Conference of Soil Mechanics, Harvard University Press, 1, 54–56.

    Google Scholar 

  • Timms, W. A., & Acworth, R. I. (2005). Propagation of pressure change through thick clay sequences: an example from Liverpool Plains, NSW, Australia. Hydrogeology Journal, 13(5–6), 858–870.

    Google Scholar 

  • Tremosa, J. (2010). Influence of osmotic processes on the excesshydraulic head measured in the Toarcian/Domerian argillaceous formation of Tournemire. Ph.D. dissertation (p. 322). Paris: Université Pierre et Marie Curie.

    Google Scholar 

  • UNESCO. (1981). Tenth report on the joint panel on oceanographic tables and standard. UNESCO Technical Paper in Marine Science, 36, 28.

    Google Scholar 

  • Ullman, W. J., & Aller, R. C. (1982). Diffusion coefficients in nearshore marine sediments. Limnology and Oceanography, 27, 552–556.

    Google Scholar 

  • Van Loon, L. R., & Mibus, J. (2015). A modified version of Archie’s law to estimate effective diffusion coefficients of radionuclides in argillaceous rocks and its application in safety analysis studies. Applied Geochemistry, 59, 85–94.

    Google Scholar 

  • Van Loon, L. R., Soler, J. M., Jakob, A., & Bradbury, M. H. (2003). Effect of confining pressure on the diffusion of HTO, 36Cl and 125I in a layered argillaceous rock (Opalinus Clay): diffusion perpendicular to the fabric. Applied Geochemistry, 18, 1653–1662.

    Google Scholar 

  • Van der Kamp, G. (2001). Methods for determining the in situ hydraulic conductivity of shallow aquitards–an overview. Hydrogeology Journal, 9, 5–16.

    Google Scholar 

  • Wiegel, R. L. (1964). Tsunamis, storm surges, and harbour oscillations. In Oceanographical Engineering (pp. 95–127). Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Yu, L., Rogiers, B., Gedeon, M., Marivoet, J., Craen, M. D., & Mallants, D. (2013). A critical review of laboratory and in situ hydraulic conductivity measurements for the Boom Clay in Belgium. Applied Clay Science, 75, 1–12.

    Google Scholar 

Download references

Acknowledgements

This study was performed in the framework of the deep borehole (DB) experiment, financed by six partners of the International Mont Terri Consortium (swisstopo, NAGRA, BGR, GRS, NWMO, IRSN). The authors would like to thank Karam Kontar and Jocelyn Gisiger (Solexperts AG) for their technical support and realisation of hydraulic testing, as well as Christelle Courbet (IRSN) and Benoȋt Paris (INTERA) for advices on numerical interpretation. The MuStat v1 package used in this paper is the result of previous works respectively done by: Alain Mangin (CNRS, Laboratoire d‘écologie des hydrosystèmes de Moulis), David Labat (Géosciences Envionnement Toulouse), Rachid Ababou (CNRS/INPT/IMFT), Hassane Fatmi (PhD at IRSN and CNRS/INPT/IMFT) and David Bailly (TREES Institute). The constructive and careful reviews of Prof. Z. Jiang (Queensland University of Technology, Brisbane, Australia) and Prof. P. Cosenza (University of Poitiers, France) contributed to improve the initial version of this article and are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, C. et al. (2018). Comparative study of methods to estimate hydraulic parameters in the hydraulically undisturbed Opalinus Clay (Switzerland). In: Bossart, P., Milnes, A. (eds) Mont Terri Rock Laboratory, 20 Years. Swiss Journal of Geosciences Supplement, vol 5. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-70458-6_5

Download citation

Publish with us

Policies and ethics