Skip to main content

Heat Flows in Production Systems and its Modeling and Simulation

  • Chapter
  • First Online:
Integrated Planning of Heat Flows in Production Systems
  • 498 Accesses

Abstract

This chapter introduces the theoretical foundation of the book by describing relevant terms and concepts of production systems in general and heat flows in particular (Sect. 2.1). It further presents two modeling methods to capture the behavior of heat flows in production systems and to provide design related options for improvements (Sect. 2.2). The chapter ends with a summary of preliminary findings concerning heat flows in production systems and its modeling methods (Sect. 2.3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Deutsches Institut für Normung (DIN).

  2. 2.

    More information on PM can be found in Westkämper et al. (2006), Herrmann (2010), Schuh and Schmidt (2014), Wiendahl et al. (2015).

  3. 3.

    More information on informational flows can be found for example in Posselt (2016).

  4. 4.

    For example due to carry-off of cutting fluid and evaporation extracted through the exhaust air filtration system.

  5. 5.

    Comprehensive explanations about the different energy terms and their relation to each other can be found in Baehr and Kabelac (2012) and Weigand et al. (2013).

  6. 6.

    For more information on energy conversions in factories it is referred to Posselt (2016) providing a comprehensive overview on this topic.

  7. 7.

    Baehr and Kabelac (2012) provide comprehensive explanations regarding the term exergy.

  8. 8.

    One example of a variation of these mechanisms is known as heat transition. Heat transition applies for example when two fluids are separated from each other by a solid material. In this case, heat transition sums up the convection from the fluid 1 to the wall, the heat conduction through the wall and the subsequent convection from the wall to fluid 2 which are described individually in this work. More information on heat conduction can be found in Böckh and Wetzel (2015).

  9. 9.

    It can be distinguished between free and forced convection. Free convection considers flows caused by changes in temperature and thus also density in the fluid whereas forced convection often results from changes in pressure (Marek and Nitsche 2011; Böckh and Wetzel 2015).

  10. 10.

    A detailed explanation of \(\alpha _{C}\) can be found in Cerbe and Wilhelms (2011).

  11. 11.

    With \(\sigma = 5.67 \cdot 10^{-8}\,[\frac{W}{m^2 K^4}]\). More information regarding different influencing factors on Eq. 2.5 can be found in Marek and Nitsche (2011).

  12. 12.

    In that regard, heat often only depends on the type of phase change but not on the temperature, which is why this type of (waste) heat is also referred to as latent heat.

  13. 13.

    \(\varDelta H_e = \kappa _1 + \kappa _2 \cdot T_{fluid}\).

  14. 14.

    \(\kappa _1 = 2502000\,[\frac{J}{kg}]\).

  15. 15.

    \(\kappa _2 = -2430\,[\frac{J}{kg\cdot K}]\).

  16. 16.

    See Sect. 2.1.2 for more information.

  17. 17.

    In Monte Carlo experiments the simulation model is run repeatedly with changed variables in each run, which are often generated randomly.

  18. 18.

    The terms multi-level and multi-scale can be understood as synonymous, whereas this work uses the term multi-level due to its stronger emphasis on the spatial aspects in terms of simulation modeling.

  19. 19.

    A comprehensive overview of the different ares of applications can be found in Klemeš (2013).

  20. 20.

    Although in thermodynamics the enthalpy is a function dependent on temperature, pressure and the composition of the process flow, HI simplifies this relation by assuming a consistent composition of the process and mass flow as well as constant pressure and heat capacity.

  21. 21.

    In case the composition of a process flow changes (e.g. through condensation or evaporation) and/or an inconstant CP exists, the process flow can be piece-wise linearized by defining new, additional process flows often referred to as process flow segments (Kemp 2011; Klemeš 2013).

  22. 22.

    A more detailed analysis of the economical effect can be found in Shenoy (1995), Kemp (2011) or Ludwig (2012).

  23. 23.

    The gray area indicates only parts of the heat recovery potential which is relevant for the usage of external utilities and their temperature level. The entire potential for heat recovery is shown by the CC, for example in Figure 2.10.

  24. 24.

    Further types of formal models including also non-linearities as well as comprehensive explanations of them can be found in Domschke et al. (2015), Grossmann et al. (1999).

  25. 25.

    The Branch-and-Bound method has its name because it sets up decision trees with various branches leading to new sub-problems which are solved and evaluated based on the bounds (Grossmann et al. 1999).

References

  • Afazov S (2013) Modelling and simulation of manufacturing process chains. CIRP J Manuf Sci Technol 6(1):70–77. https://doi.org/10.1016/j.cirpj.2012.10.005 ISSN 1755-5817

    Article  Google Scholar 

  • Baehr HD, Kabelac S (2012) Thermodynamik. Springer, Berlin. https://doi.org/10.1007/978-3-642-24161-1 ISBN 978-3-642-24160-4

  • Ball PD, Evans S, Levers A, Ellison D (2009) Zero carbon manufacturing facility-towards integrating material, energy, and waste process flows. Proc Inst Mech Eng Part B: J Eng Manuf 223(9):1085–1096

    Google Scholar 

  • Banks J, Carson JS, Nelson BL, Nicol DM (2010) Discrete-Event System Simulation, 5th edn. Prentice-Hall international series in industrial and systems engineering, Pearson ISBN 978-0136062127

    Google Scholar 

  • Barthel C, Klusemann B, Denzer R, Svendsen B (2013) Modeling of a thermomechanical process chain for sheet steels. Int J Mech Sci 74:46–54. https://doi.org/10.1016/j.ijmecsci.2013.04.006 ISSN 0020-7403

  • Bergmann S (2014) Automatische Generierung Adaptiver Modelle zur Simulation von Produktionssystemen. Universitäatsverlag Ilmenau ISBN 9783863600846

    Google Scholar 

  • Bickford D, Leong K, Ward P (1996) Configurations of manufacturing strategy, business strategy, environment and structure. J Manag 22(4):597–626

    Google Scholar 

  • Böckh P, Wetzel T (2015) Wärmeübertragung. Springer Vieweg, Verlag. https://doi.org/10.1007/978-3-662-44477-1 ISBN 978-3-662-44476-4

  • Böge A, Böge W (2014) Handbuch Maschinenbau. Springer Vieweg. https://doi.org/10.1007/978-3-658-06598-0 ISBN 978-3-658-06597-3

  • Boras BW, Hirakis SP, Votapka LW, Malmstrom RD, Amaro RE, McCulloch AD (2015) Bridging scales through multiscale modeling: A case study on protein kinase A. 6:1–15. https://doi.org/10.3389/fphys.2015.00250 ISSN 1664042X

  • Borgdorff J, Mamonski M, Bosak B, Kurowski K, Belgacem MB, Chopard B, Groen D, Coveney P, Hoekstra A (2014) Distributed multiscale computing with muscle 2, the multiscale coupling library and environment. J Comput Sci 5(5):719–731. https://doi.org/10.1016/j.jocs.2014.04.004 ISSN 1877-7503

  • Borshchev A, Filippov A (2004) From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques, Tools. In Kennedy M, Winch G.W, Langer R.S, Rowe J.I, Yanni J.M (eds) 22th International Conference of the System Dynamics

    Google Scholar 

  • Boukouvala F, Niotis V, Ramachandran R, Muzzio FJ, Ierapetritou MG (2012) An integrated approach for dynamic flowsheet modeling and sensitivity analysis of a continuous tablet manufacturing process. Comput Chem Eng 42:30–47. https://doi.org/10.1016/j.compchemeng.2012.02.015. ISSN 0098-1354

  • Brecher C, Esser M, Witt S (2009) Interaction of manufacturing process and machine tool. CIRP Ann Manuf Technol 58(2):588–607. https://doi.org/10.1016/j.cirp.2009.09.005 ISSN 00078506

  • Cerbe G, Wilhelms G (2011) Thermodynamik Technische, Hanser, 16 edn. Wilhelms, Gernot (VerfasserIn) ISBN 978-3-446-42464-7

    Google Scholar 

  • Chung CA (2003) Simulation Modeling Handbook - A Practical Approach. Industrial and Manufacturing Engineering Series, boca raton edn. CRC Press ISBN 9780849312410

    Google Scholar 

  • Chvatal V (1983) Linear programming. Macmillan

    Google Scholar 

  • Despeisse M, Ball P, Evans S, Levers A (2012) Industrial ecology at factory level a conceptual model. Journal of Cleaner Production 31:30–39. https://doi.org/10.1016/j.jclepro.2012.02.027 ISSN 0959-6526

  • DIN 8580. Din norm 8580:2003-09 (2003)

    Google Scholar 

  • Domschke W, Drexl, Klein R, Scholl A (2015) Einführung in Operations Research. Springer ISBN 978-3-662-48215-5

    Google Scholar 

  • Duflou JR, Sutherland JW, Dornfeld D, Herrmann C, Jeswiet J, Kara S, Hauschild M, Kellens K (2012) Towards energy and resource efficient manufacturing: A processes and systems approach. CIRP Annal Manuf Technol 61(2):587–609. https://doi.org/10.1016/j.cirp.2012.05.002 ISSN 0007-8506

  • Dyckhoff H, Spengler TS (2010) Produktionswirtschaft. Springer, Lehrbuch

    Book  Google Scholar 

  • El-Halwagi M M (2012) Sustainable design through process integration: Fundamentals and applications to industrial pollution prevention, resource conservation, and profitability enhancement. Elsevier/Butterworth-Heinemann. ISBN 978-1-85617-744-3

    Google Scholar 

  • El-Halwagi MM (1997) Pollution Prevention Through Process Integration: Systematic Design Tools. Academic press

    Google Scholar 

  • Ellinger T, Beuermann G, Leisten R (2001) Operations Research: Eine Einführung. Springer

    Google Scholar 

  • Foo DC (2012) Process integration for resource conservation. CRC Press

    Google Scholar 

  • Forrester JW (1968) Urban Dynamics. Taylor and Francis Inc

    Google Scholar 

  • Futterer E, Lohe B (1995) Stationäre Flowsheet-Simulation, pp. 81–108. VCH, Weinheim

    Google Scholar 

  • Gates T, Odegard G, Frankland S, Clancy T (2005) Computational materials: Multi-scale modeling and simulation of nanostructured materials. 20th Anniversary Special Issue. Compos Sci Technol 65(15–16):2416–2434. https://doi.org/10.1016/j.compscitech.2005.06.009. ISSN 0266-3538

  • Giebler E, Knechtel A (2009a) Abhngigkeit der Verdunstung aus galvanotechnischen Prozess- und Spllsungen. https://doi.org/10.1016/j.jclepro.2015.12.026

  • Grossmann IE, Caballero JA, Yeomans H (1999) Mathematical programming approaches to the synthesis of chemical process systems. Korean J Cheml Eng 16(4):407–426

    Article  Google Scholar 

  • Großmann K, Jungnickel G (2008) Thermische Modellierung von Prozesseinflüssen an spanenden Werkzeugmaschinen. Praxis, Lehrstuhl für Werkzeugmaschinen, Lehre, Forschung. ISBN 978-386780-089-1

    Google Scholar 

  • Grundersen T (2000) A Process Integration Primer - Implementing Agreement on Process Integration. International Energy Agency, SINTEF Energy Research, Trondheim

    Google Scholar 

  • Heinemann T (2016) Energy and Resource Efficiency in Aluminium Die Casting. Springer International Publishing. https://doi.org/10.1007/978-3-319-18815-7 ISBN 978-3-319-18814-0

  • Heinemann T, Machida W, Thiede S, Herrmann C, Kara S (2012) A Hierarchical Evaluation Scheme for Industrial Process Chains: Aluminum Die Casting, Springer, Heidelberg, pp. 503–508. https://doi.org/10.1007/978-3-642-29069-5_85 ISBN 978-3-642-29069-5

  • Herrmann C (2010) Ganzheitliches Life Cycle Management. Springer, Berlin. https://doi.org/10.1007/978-3-642-01421-5 ISBN 978-3-642-01420-8

  • Herrmann C, Schmidt C, Kurle D, Blume S, Thiede S (2014) Sustainability in manufacturing and factories of the future. 1:283–292. https://doi.org/10.1007/s40684-014-0034-z ISSN 2288-6206

  • Herrmann C, Thiede S, Kara S, Hesselbach J (2011) Energy oriented simulation of manufacturing systems concept and application. CIRP Annals - Manufacturing Technology 60(1):45–48. https://doi.org/10.1016/j.cirp.2011.03.127 ISSN 0007-8506

  • Hesselbach J (2012) Energie- und klimaeffiziente Produktion. Springer, Vieweg. https://doi.org/10.1007/978-3-8348-9956-9 ISBN 978-3-8348-0448-8

  • Hesselbach J, Herrmann R, Detzer C, Martin L, Thiede S, Lüdemann B (2008) Energy efficiency through optimized coordination of production and technical building services. 29:624–629

    Google Scholar 

  • Hoekstra A, Lorenz E, Falcone J-L, Chopard B (2007) Towards a complex automata framework for multi-scale modeling: Formalism and the scale separation map. Proc. ICCS 2007:1–91

    Google Scholar 

  • Höge R (1995) Organisatorische Segmentierung. Ein Instrument zur Komplexittshandhabung. Dt. Univ.-Verlag

    Google Scholar 

  • Hohmann EC (1971) Optimum Networks for Heat Exchange. Ph.D. thesis, University of Southern California

    Google Scholar 

  • ICT Consultation Group. ICT and Energy Efficiency: The Case for Manufacturing (2009)

    Google Scholar 

  • Jahangirian M, Eldabi T, Naseer A, Stergioulas LK, Young T (2010) Simulation in manufacturing and business: A review. Eur J Operational Res 203(1):1–13. https://doi.org/10.1016/j.ejor.2009.06.004 ISSN 0377-2217

  • Kemp IC (2011) Pinch analysis and process integration: a user guide on process integration for the efficient use of energy. Butterworth-Heinemann

    Google Scholar 

  • Klemeš J J, Friedler F, Bulatov I, Varbanov P (2013) Sustainability in the Process Industry: Integration and Optimization. McGraw-Hill

    Google Scholar 

  • Klemeš JJ (2013) Handbook of process integration (PI): minimisation of energy and water use, waste and emissions. Elsevier

    Google Scholar 

  • Landherr M, Neumann M, Volkmann J, Constantinescu C (2013) Digit. Produktion. In: Westkämper E, Spath D, Constantinescu C, Lentes J (eds) Digitale Fabrik. Springer, Heidelberg, pp 107–131 ISBN 9783642202582

    Google Scholar 

  • . Linnhoff March Limited. Mit der Pinch-Technologie Prozesse und Anlagen optimieren: Eine Methode des betrieblichen Energie-und Stoffstrommanagements. Landesanstalt für Umweltschutz Baden-Württemberg (LfU) (2003)

    Google Scholar 

  • Law AM (2014) Simulation Modeling and Analysis, 5th edn. McGraw-Hill Education, New York ISBN 978-0073401324

    Google Scholar 

  • Leimkühler H J (2010) Managing CO2 Emissions in the Chemical Industry. Wiley-VCH

    Google Scholar 

  • Lewin R (1992) Complexity. Macmillan Publishing Company, Life at the Edge of Chaos

    Google Scholar 

  • Lim JS, Foo DC, Ng DK, Aziz R, Tan RR (2014) Graphical tools for production planning in small medium industries (smis) based on pinch analysis. J Manuf Syst 33(4):639–646. https://doi.org/10.1016/j.jmsy.2014.06.001 ISSN 0278-6125

  • Linnhoff B (1998) Introduction to Pinch Technology. Linnhoff March Limited

    Google Scholar 

  • Linnhoff B, Flower J (1978a) Synthesis of heat exchanger networks: Ii. evolutionary generation of networks with various criteria of optimality. AIChE J 24(4):642–654

    Article  Google Scholar 

  • Linnhoff B, Flower J (1978b) Synthesis of heat exchange networks: Part i: Systematic generation of energy optimal networks. AIChE J 24(4):633–642

    Article  Google Scholar 

  • Linnhoff B, Hindmarsh E (1983) Pinch Design Method Heat Exch Netw 38:745–763

    Google Scholar 

  • Linnhoff B, Mason DR, Wardle I (1979) Underst Heat Exch Netw 3:295–302

    Google Scholar 

  • Ludwig J (2012) Energieeffizienz durch Planung betriebsübergreifender Prozessintegration mit der Pinch-Analyse. KIT Scientific Publishing, Karlsruhe, Karlsruhe. ISBN 9783866448834

    Google Scholar 

  • Marek R, Nitsche K (2011) Praxis der Wärmeübertragung Nitsche, Klaus (VerfasserIn), 2nd edn. Carl Hanser Verlag. https://doi.org/10.3139/9783446426665 ISBN 978-3-446-42510-1

  • McDowell DL, Olson GB (2008) Concurrent design of hierarchical materials and structures. Sci Modeling Simul SMNS 15(1):207. https://doi.org/10.1007/s10820-008-9100-6 ISSN 1874-8562

  • Morand R, Rainer B, Robert B, Hanspeter P (2006) Prozessintegration mit der Pinch-Methode - Handbuch zum BFE-Einführungskurs. Bundesamt für Energie BFE, nochmal herausfinden wie man das genau zitiert

    Google Scholar 

  • Müller E, Engelmann J, Löffler T, Jörg S (2009) Energieeffiziente Fabriken planen und betreiben. Springer, Berlin

    Google Scholar 

  • Negahban A, Smith JS (2014) Simulation for manufacturing system design and operation: Literature review and analysis. Journal of Manufacturing Systems 33(2):241–261. https://doi.org/10.1016/j.jmsy.2013.12.007 ISSN 0278-6125

  • Nylund H, Andersson PH (2010) 19th International conference on flexible automation and intelligent manufacturinglean manufacturing and services. Robot Comput Integr Manuf 26(6):622–628. https://doi.org/10.1016/j.rcim.2010.07.009. ISSN 0736-5845

  • Peters MS, Timmerhaus KD, West RE (2003) Plant Design and Economics for Chemical Engineers, 5th edn. McGraw-Hill

    Google Scholar 

  • Posselt G (2016) Towards Energy Transparent Factories. Sustainable production, life cycle engineering and management edition. Springer International Publishing, Berlin. https://doi.org/10.1007/978-3-319-20869-5

  • Pritsker AAB (1995) Introduction to simulation and SLAM II. John Wiley and Sons and Systems Pub. Co ISBN 0470234571

    Google Scholar 

  • ProcessNet-Fachgruppe. Trends und Perspektiven in der industriellen Wassertechnik: Rohwasser - Prozess - Abwasser. VDI-Buch. DECHEMA e.V., (2014) ISBN 978-89746-153-6

    Google Scholar 

  • Rabe M, Spiekermann S, Wenzel S (2008) Verifikation und Validierung für die Simulation in Produktion und Logistik. Springer, Heidelberg. https://doi.org/10.1007/978-3-540-35282-2 ISBN 978-3-540-35281-5

  • Rebhan E (2002) Energiehandbuch. Wandlung und Nutzung von Energie, Springer, Gewinnung

    Book  Google Scholar 

  • Rose O, März L (2011) Simul. und Optimierung Produktion und Logistik. Simulation. Springer, Berlin, pp 13–19. https://doi.org/10.1007/978-3-642-14536-02

  • Schenk M, Wirth S, Müller E (2014) Fabrikplanung und Fabrikbetrieb. Springer, Berlin. https://doi.org/10.1007/978-3-642-05459-4 ISBN 978-3-642-05458-7

  • Schieritz N, Milling PM (2003) Modeling the Forest or Modeling the Trees. In Eberlein RL, Diker, Vedat G, Langer RS, Rowe, Jennifer I (eds) 21st International Conference of System Dynamics

    Google Scholar 

  • Schnell H, Wiedemann B (2012) Bussysteme in der Automatisierungs- und Prozesstechnik, Grundlagen, Systeme und Anwendungen der industriellen Kommunikation, 8th edn. Vieweg+Teubner Verlag, ISBN 978-3-8348-0901-8

    Google Scholar 

  • Schönemann M (2017) Multiscale Simulation Approach for Battery Production Systems. Sustainable production, life cycle engineering and management edition, Springer International Publishing. https://doi.org/10.1007/978-3-319-49367-1

  • Schuh G, Schmidt C (2014) Produktionsmanagement

    Google Scholar 

  • Sen M, Chaudhury A, Singh R, John J, Ramachandran R (2013) Multi-scale flowsheet simulation of an integrated continuous purification downstream pharmaceutical manufacturing process. Int J Pharm 445(1–2):29–38. https://doi.org/10.1016/j.ijpharm.2013.01.054 ISSN 0378-5173

  • Shenoy UV (1995) Heat Exchanger Network Synthesis: Process Optimization by Energy and Resource Analysis. Gulf Publishing Company

    Google Scholar 

  • Singhvi A, Shenoy U (2002) Aggregate planning in supply chains by pinch analysis. Chem Eng Res Design 80(6):597–605

    Article  Google Scholar 

  • Smith R (2000) State of the art in process integration. Appl Thermal Eng 20(15–16):1337–1345. https://doi.org/10.1016/S1359-4311(00)00010-7 ISSN 1359-4311

  • Smith R (2005) Chemical Process Design and Integration. Wiley, New York

    Google Scholar 

  • Spengler T.S (1994) Industrielle Demontage- und Recyclingkonzepte: Betriebswirtschaftliche Planungsmodelle zur ökonomisch effizienten Umsetzung abfallrechtlicher Rücknahme und Verwertungspflichten. Erich Schmidt Verlag

    Google Scholar 

  • Sterman J (2000) Business Dynamics: Systems Thinking and Modeling for a Complex World. McGraw-Hill Education Ltd ISBN 9780072389159

    Google Scholar 

  • Suhl L, Mellouli T (2009) Optimierungssysteme: Modelle, Verfahren, Software, Anwendungen, 2nd edn. Springer, Berlin

    Google Scholar 

  • Thiede S (2012) Energy Efficiency in Manufacturing Systems. Springer, Berlin. https://doi.org/10.1007/978-3-642-25914-2 ISBN 978-3-642-25913-5

  • Ulrich H, Probst G (1991) Anleitung zum ganzheitlichen Denken und Handeln. Ein Brevier fr Fhrungskräfte, 3rd edn. Haupt Verlag ISBN 3-258-04500-3

    Google Scholar 

  • Umeda T, Harada T, Shiroko K (1979) A thermodynamic approach to the synthesis of heat integration systems in chemical processes. Comput Chem Eng 3(1–4):273–282

    Article  Google Scholar 

  • VDI. 3633 sheet 1: Simulation von logistik-, materialfluss- und produktionssystemen grundlagen (engl.: Simulation of systems in materials handling, logistics and production fundamentals) (2014)

    Google Scholar 

  • Verl A, Abele E, Heisel U, Dietmair A, Eberspächer P, Rahäuser R, Schrems S, Braun S (2011) Modular modeling of energy consumption for monitoring and control. In: Hesselbach J, Herrmann C (eds) Glocalized Solutions for Sustainability in Manufacturing. Technische Universität Braunschweig, Springer, pp 341–346 ISBN 978-3-642-19691-1

    Google Scholar 

  • Wang Y, Smith R (1994) Wastewater minimisation. Chem Eng Sci 49(7):981–1006

    Article  Google Scholar 

  • Weigand B, Köhler J, von Wolfersdorf J (2013) Thermodynamik kompakt, 3rd edn. Springer, Berlin. https://doi.org/10.1007/978-3-642-37233-9 ISBN 978-3-642-37232-2

  • Wenzel S, Wei M, Collisi-Böhmer S, Pitsch H, Rose O (2008) Qualitätskriterien für die Simulation in Produktion und Logistik. Springer, Heidelberg, vdi-buch edition. https://doi.org/10.1007/978-3-540-35276-1 ISBN 978-3-540-35272-3

  • Westkämper E (2005) Einführung in die Organisation der Produktion. Springer, Berlin

    Google Scholar 

  • Westkämper E, Warnecke H-J, Decker M (2006) Einführung in die Fertigungstechnik, 7th edn. Teubner bearb. und erg. aufl. ISBN 9783835101104

    Google Scholar 

  • Westkämper E, Zahn E (2009) Wandlungsfhige Produktionsunternehmen: Das Stuttgarter Unternehmensmodell, 1st edn. Springer, Berlin. https://doi.org/10.1007/978-3-540-68890-7

  • Wiendahl H-P, Maraghy HAE, Nyhuis P, Z? M, Wiendahl H-H, Duffie N, Brieke M (2007) Changeable manufacturing - classification, design and operation. CIRP Annals - Manufacturing Technology 56(2):783–809. https://doi.org/10.1016/j.cirp.2007.10.003 ISSN 0007-8506

  • Wiendahl H-P, Reichardt J, Nyhuis P (2015) Handbook Factory Planning and Design. Springer, Berlin. https://doi.org/10.1007/978-3-662-46391-8 ISBN 978-3-662-46390-1

  • Willke H (1991) Systemtheorie. Fischer, 3. edn. ISBN 9783437402548

    Google Scholar 

  • Wohinz J, Moor M (1989) Betriebliches Energiemanagement: Aktuelle Investition in die Zukunft. Springer, Berlin

    Google Scholar 

  • Zeigler B, Praehofer H, Kim TG (2000) Theory of Modeling and Simulation. Academic Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Kurle .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kurle, D. (2018). Heat Flows in Production Systems and its Modeling and Simulation. In: Integrated Planning of Heat Flows in Production Systems. Sustainable Production, Life Cycle Engineering and Management. Springer, Cham. https://doi.org/10.1007/978-3-319-70440-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70440-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70439-5

  • Online ISBN: 978-3-319-70440-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics