Skip to main content
  • 484 Accesses

Abstract

The book starts by explaining the underlying motivation and resulting problem statement (Sect. 1.1). Based on that, the chapter derives a research objective as well as a work structure (Sect. 1.2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Starting from 2012.

  2. 2.

    Section 2.1.3 explains the term exergy in more detail.

  3. 3.

    Although the global waste heat distribution differs in some aspects from Cullen and Allwood (2010)’s study, the Sankey diagram allows for a sector specific allocation of waste heat and temperature level. The studies’ difference results from diverse reasons such as a slightly different process chain of energy conversion, different individual efficiency factors and a neglect of fuel losses (Forman et al. 2016).

  4. 4.

    Due to risks associated with dew point corrosion.

References

  • Blesl M, Kessler A (2013) Energieeffizienz in der Industrie, Springer Vieweg. ISBN 978-3-642-36513-3. https://doi.org/10.1007/978-3-642-36514-0

  • Cullen JM, Allwood JM (2010) Theoretical efficiency limits for energy conversion devices. Energy 35(5):2059–2069. ISSN 0360-5442. http://dx.doi.org/10.1016/j.energy.2010.01.024

  • DoE (2008) Waste heat recovery: technology and opportunities in U.S. industry

    Google Scholar 

  • Duflou JR, Sutherland JW, Dornfeld D, Herrmann C, Jeswiet J, Kara S, Hauschild M, Kellens K (2012) Towards energy and resource efficient manufacturing: a processes and systems approach. CIRP Ann Manufact Technol 61(2):587–609. ISSN 0007-8506. http://dx.doi.org/10.1016/j.cirp.2012.05.002

  • EC (2015) The Paris Protocol - A blueprint for tackling global climate change beyond 2020. European Commission

    Google Scholar 

  • Evans S, Gregory M, Ryan C, Bergendahl MN, Tan A (2009) Towards a sustainable industrial system: with recommendations for education, research, industry and policy. University of Cambridge, Institute for Manufacturing

    Google Scholar 

  • Forman C, Muritala IK, Pardeann R, Meyer B (2016) Estimating the global waste heat potential. Renew Sustain Energy Rev 57:1568–1579. ISSN 1364-0321. http://dx.doi.org/10.1016/j.rser.2015.12.192

  • Geldermann J (2014) Anlagen- und Energiewirtschaft - Kosten- und Investitionsabschtzung sowie Technikbewertung von Indistrieanlagen. Verlag Franz Vahlen

    Google Scholar 

  • Hammond G, Norman J (2012) Heat recovery opportunities in UK manufacturing. In: International conference on applied energy (ICAE2012)

    Google Scholar 

  • Herrmann C, Thiede S, Kara S, Hesselbach J (2011) Energy oriented simulation of manufacturing systems concept and application. CIRP Ann Manuf Technol 60(1):45–48. ISSN 0007-8506. http://dx.doi.org/10.1016/j.cirp.2011.03.127

  • IEA (2012) Key world energy statistics 2012. International Energy Agency. OECD Publishing

    Google Scholar 

  • IEA (2014) Energy efficiency indicators. Fundamentals on statistics. International Energy Agency

    Google Scholar 

  • IEA (2015) Energy and climate change - World energy outlook special report. International Energy Agency

    Google Scholar 

  • McKenna R, Norman J (2010) Spatial modelling of industrial heat loads and recovery potentials in the UK. Energy Policy, 38(10):5878–5891. ISSN 0301-4215. http://dx.doi.org/10.1016/j.enpol.2010.05.042. The socio-economic transition towards a hydrogen economy - findings from European research, with regular papers

  • Mousavi S, Kara S, Kornfeld B (2014) Energy efficiency of compressed air systems. Proc CIRP 15:313–318. ISSN 2212-8271. http://dx.doi.org/10.1016/j.procir.2014.06.026

  • Pehnt M, Bödeker J, Arens M (2011) Industrial waste heat tapping into a neglected efficiency potential. ECEE 2011 Summer Study, pp 691–700

    Google Scholar 

  • Pehnt M, Bödeker J, Arens M, Jochem E, Idrissova F (2010) Die Nutzung industrieller Abwärme – technisch-wirtschaftliche Potenziale und energiepolitische Umsetzung. http://www.ifeu.de/energie/pdf/Nutzung_industrieller_Abwaerme.pdf

  • Perry SJ (2008) Integrating waste and renewable energy to reduce the carbon footprint of locally integrated energy sectors. Energy, 33(10):1489–1497. ISSN 0360-5442. http://dx.doi.org/10.1016/j.energy.2008.03.008. (PRES ’07 10th conference on process integration, modelling and optimisation for energy saving and pollution reduction)

  • Randers J (2013) Der neue Bericht an den Club of Rome; eine globale Prognose fr die nchsten 40 Jahre, 2nd edn. Oekom-Verlag

    Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson Å, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ et al (2009) A safe operating space for humanity. Nature 461(7263):472–475

    Article  Google Scholar 

  • SAENA (2012) Technologien der abwärmenutzung. Technical report, Sächsische Energieagentur GmbH

    Google Scholar 

  • Schmitz W (2012) Abwärmenutzung im betrieb: Klima schützen - kosten senken. Technical report, Bayerisches Landesamt fr Umwelt (LfU)

    Google Scholar 

  • Semkov K, Mooney E, Connolly M, Adley C (2014) Efficiency improvement through waste heat reduction. Appl Therm Eng 70(1):716–722. ISSN 1359-4311. https://doi.org/10.1016/j.applthermaleng.2014.05.030

  • Sollesnes G, Helgerud HE (2009) Potensialstudie for utnyttelse av spillvarme fra norsk industri. Technical report. Enova (Hg.)

    Google Scholar 

  • Thiede S, Schönemann M, Kurle D, Herrmann C (2016) Multi-level simulation in manufacturing companies: the water-energy nexus case. J Clean Prod ISSN 0959-6526. http://dx.doi.org/10.1016/j.jclepro.2016.08.144

  • UNEP (2013) The emissions gap report 2013. A UNEP Synthesis Report

    Google Scholar 

  • United Nations (2013) Population. Development and the Environment, United Nations Department of Economic and Social Affairs

    Google Scholar 

  • Ziesing H-J (2013) Anwendungsbilanzen für die endenergiesektoren in deutschland in den jahren 2011 und 2012. Technical report, BMWi

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Kurle .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kurle, D. (2018). Introduction. In: Integrated Planning of Heat Flows in Production Systems. Sustainable Production, Life Cycle Engineering and Management. Springer, Cham. https://doi.org/10.1007/978-3-319-70440-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70440-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70439-5

  • Online ISBN: 978-3-319-70440-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics