Update on Albinism

Chapter
Part of the Updates in Clinical Dermatology book series (UCD)

Abstract

Albinism is a generic clinical term that describes conditions characterized by hypopigmentation of skin, hair, and eyes or eyes alone of affected individuals. It is caused by pathologic variants of genes that are associated with melanin synthesis, melanocyte differentiation/migration, or membrane trafficking. Although these are generally rare conditions, some types of albinism are seen more frequently in certain regions as a result of the founder effect (Ito et al., J Invest Dermatol 125(4):715–720, 2005; Okoro, Br J Dermatol 92(5):485–492, 1975).

Albinism is classified into two subtypes, non-syndromic albinism, with symptoms restricted to impaired melanin biosynthesis (hypopigmentation of skin and hair and ocular changes such as reduced pigmentation of the iris, nystagmus, impaired visual acuity, and foveal hypoplasia), and syndromic albinism, which displays various non-pigmentary symptoms including bleeding diathesis, lung fibrosis, and immunodeficiency. Non-syndromic albinism is subdivided into two types: oculocutaneous albinism (OCA) and ocular albinism (OA). OCA is characterized by hypopigmentation of skin and hair and ocular changes. OA is restricted to ocular changes that significantly overlap with those of OCA, although some individuals with OA may display mild to moderate hypopigmentation of skin and eyes compared to unaffected male siblings (Lewis RA. Ocular albinism, X-linked. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, et al., editors. GeneReviews(R). Seattle: University of Washington, Seattle, University of Washington, Seattle. All rights reserved; 1993). Syndromic albinism encompasses many heterogeneous conditions including Hermansky-Pudlak syndrome (HPS), Chediak-Higashi syndrome (CHS), and Griscelli syndrome (GS). These conditions are characterized by various systemic symptoms because the responsible genes are involved in intracellular membrane and vesicle trafficking. Recent advances in genetic analysis enable us to detect additional types of albinism and the genes responsible for these disorders (Kausar et al., Clin Genet 84(1):91–93,2013; Wei et al., J Invest Dermatol 133(7):1834–1840, 2013; Gronskov et al., Am J Hum Genet 92(3):415–421, 2013, Okamura et al., Pigment Cell Melanoma Res. 2017. doi: 10.1111/pcmr.12662; Montoliu et al., Pigment Cell Melanoma Res 27(1):11–18, 2014). On the other hand, no mutations in known albinism-related genes are detected in around 20% of affected individuals (Montoliu et al., Pigment Cell Melanoma Res 27(1):11–18, 2014). A genome-wide association study has shown that a single nucleotide polymorphism (SNP) in the regulatory region upstream of the KIT ligand (KITLG) gene is involved in blond hair in Northern Europeans (Sulem et al., Nat Genet 39(12):1443–1452, 2007), suggesting that genetic alterations in noncoding regions near albinism-related genes can also be involved in the pathogenesis of albinism, as well as potential albinism genes yet to be identified (Montoliu et al., Pigment Cell Melanoma Res 27(1):11–18, 2014).

Keywords

Non-syndromic albinism Melanin synthesis Oculocutaneous albinism Syndromic albinism Membrane trafficking Hermansky-Pudlak syndrome Chediak-Higashi syndrome Griscelli syndrome 

References

  1. 1.
    Ito S, Suzuki T, Inagaki K, Suzuki N, Takamori K, Yamada T, et al. High frequency of Hermansky-Pudlak syndrome type 1 (HPS1) among Japanese albinism patients and functional analysis of HPS1 mutant protein. J Invest Dermatol. 2005;125(4):715–20.CrossRefGoogle Scholar
  2. 2.
    Okoro AN. Albinism in Nigeria. A clinical and social study. Br J Dermatol. 1975;92(5):485–92.CrossRefGoogle Scholar
  3. 3.
    Lewis RA. Ocular albinism, X-linked. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, et al., editors. GeneReviews(R). Seattle: University of Washington, Seattle, University of Washington, Seattle. All rights reserved; 1993.Google Scholar
  4. 4.
    Kausar T, Bhatti MA, Ali M, Shaikh RS, Ahmed ZM. OCA5, a novel locus for non-syndromic oculocutaneous albinism, maps to chromosome 4q24. Clin Genet. 2013;84(1):91–3.CrossRefGoogle Scholar
  5. 5.
    Wei AH, Zang DJ, Zhang Z, Liu XZ, He X, Yang L, et al. Exome sequencing identifies SLC24A5 as a candidate gene for nonsyndromic oculocutaneous albinism. J Invest Dermatol. 2013;133(7):1834–40.CrossRefGoogle Scholar
  6. 6.
    Gronskov K, Dooley CM, Ostergaard E, Kelsh RN, Hansen L, Levesque MP, et al. Mutations in c10orf11, a melanocyte-differentiation gene, cause autosomal-recessive albinism. Am J Hum Genet. 2013;92(3):415–21.CrossRefGoogle Scholar
  7. 7.
    Okamura K, Abe Y, Araki Y, Wakamatsu K, Seishima M, Umetsu T, Kato A, Kawaguchi M, Hayashi M, Hozumi Y, Suzuki T. Characterization of melanosomes and melanin in Japanese patients with Hermansky-Pudlak syndrome types 1,4, 6, and 9. Pigment Cell Melanoma Res. 2017.  https://doi.org/10.1111/pcmr.12662.
  8. 8.
    Montoliu L, Gronskov K, Wei AH, Martinez-Garcia M, Fernandez A, Arveiler B, et al. Increasing the complexity: new genes and new types of albinism. Pigment Cell Melanoma Res. 2014;27(1):11–8.CrossRefGoogle Scholar
  9. 9.
    Sulem P, Gudbjartsson DF, Stacey SN, Helgason A, Rafnar T, Magnusson KP, et al. Genetic determinants of hair, eye and skin pigmentation in Europeans. Nat Genet. 2007;39(12):1443–52.CrossRefGoogle Scholar
  10. 10.
    Oki R, Yamada K, Nakano S, Kimoto K, Yamamoto K, Kondo H, et al. A Japanese family with autosomal dominant oculocutaneous albinism type 4. Invest Ophthalmol Vis Sci. 2017;58(2):1008–16.CrossRefGoogle Scholar
  11. 11.
    Inagaki K, Suzuki T, Shimizu H, Ishii N, Umezawa Y, Tada J, et al. Oculocutaneous albinism type 4 is one of the most common types of albinism in Japan. Am J Hum Genet. 2004;74(3):466–71.CrossRefGoogle Scholar
  12. 12.
    Morice-Picard F, Lasseaux E, Francois S, Simon D, Rooryck C, Bieth E, et al. SLC24A5 mutations are associated with non-syndromic oculocutaneous albinism. J Invest Dermatol. 2014;134(2):568–71.CrossRefGoogle Scholar
  13. 13.
    Khordadpoor-Deilamani F, Akbari MT, Karimipoor M, Javadi GR. Homozygosity mapping in albinism patients using a novel panel of 13 STR markers inside the nonsyndromic OCA genes: introducing 5 novel mutations. J Hum Genet. 2016;61(5):373–9.CrossRefGoogle Scholar
  14. 14.
    Hearing VJ. Determination of melanin synthetic pathways. J Invest Dermatol. 2011;131(E1):E8–e11.CrossRefGoogle Scholar
  15. 15.
    King RA, Townsend D, Oetting W, Summers CG, Olds DP, White JG, et al. Temperature-sensitive tyrosinase associated with peripheral pigmentation in oculocutaneous albinism. J Clin Invest. 1991;87(3):1046–53.CrossRefGoogle Scholar
  16. 16.
    Kono M, Kondo T, Ito S, Suzuki T, Wakamatsu K, Ito S, et al. Genotype analysis in a patient with oculocutaneous albinism 1 minimal pigment type. Br J Dermatol. 2012;166(4):896–8.CrossRefGoogle Scholar
  17. 17.
    King RA, Wirtschafter JD, Olds DP, Brumbaugh J. Minimal pigment: a new type of oculocutaneous albinism. Clin Genet. 1986;29(1):42–50.CrossRefGoogle Scholar
  18. 18.
    Kondo T, Namiki T, Coelho SG, Valencia JC. Hearing VJ. Oculocutaneous albinism: developing novel antibodies targeting the proteins associated with OCA2 and OCA4. J Dermatol Sci. 2015;77(1):21–7.CrossRefGoogle Scholar
  19. 19.
    Manga P, Kromberg JG, Box NF, Sturm RA, Jenkins T, Ramsay M. Rufous oculocutaneous albinism in southern African blacks is caused by mutations in the TYRP1 gene. Am J Hum Genet. 1997;61(5):1095–101.CrossRefGoogle Scholar
  20. 20.
    Inagaki K, Suzuki T, Ito S, Suzuki N, Adachi K, Okuyama T, et al. Oculocutaneous albinism type 4: six novel mutations in the membrane-associated transporter protein gene and their phenotypes. Pigment Cell Res. 2006;19(5):451–3.CrossRefGoogle Scholar
  21. 21.
    Ito S, Wakamatsu K. Diversity of human hair pigmentation as studied by chemical analysis of eumelanin and pheomelanin. J Eur Acad Dermatol Venereol. 2011;25(12):1369–80.CrossRefGoogle Scholar
  22. 22.
    Hong ES, Zeeb H, Repacholi MH. Albinism in Africa as a public health issue. BMC Public Health. 2006;6:212.CrossRefGoogle Scholar
  23. 23.
    Mabula JB, Chalya PL, McHembe MD, Jaka H, Giiti G, Rambau P, et al. Skin cancers among Albinos at a University teaching hospital in Northwestern Tanzania: a retrospective review of 64 cases. BMC Dermatol. 2012;12:5.CrossRefGoogle Scholar
  24. 24.
    Box NF, Duffy DL, Irving RE, Russell A, Chen W, Griffyths LR, et al. Melanocortin-1 receptor genotype is a risk factor for basal and squamous cell carcinoma. J Invest Dermatol. 2001;116(2):224–9.CrossRefGoogle Scholar
  25. 25.
    Gudbjartsson DF, Sulem P, Stacey SN, Goldstein AM, Rafnar T, Sigurgeirsson B, et al. ASIP and TYR pigmentation variants associate with cutaneous melanoma and basal cell carcinoma. Nat Genet. 2008;40(7):886–91.CrossRefGoogle Scholar
  26. 26.
    Streutker CJ, McCready D, Jimbow K, From L. Malignant melanoma in a patient with oculocutaneous albinism. J Cutan Med Surg. 2000;4(3):149–52.CrossRefGoogle Scholar
  27. 27.
    Asuquo ME, Ngim O, Ebughe G, Bassey EE. Skin cancers amongst four Nigerian albinos. Int J Dermatol. 2009;48(6):636–8.CrossRefGoogle Scholar
  28. 28.
    Herrling T, Jung K, Fuchs J. The role of melanin as protector against free radicals in skin and its role as free radical indicator in hair. Spectrochim Acta A Mol Biomol Spectrosc. 2008;69(5):1429–35.CrossRefGoogle Scholar
  29. 29.
    Wenczl E, Van der Schans GP, Roza L, Kolb RM, Timmerman AJ, Smit NP, et al. (Pheo)melanin photosensitizes UVA-induced DNA damage in cultured human melanocytes. J Invest Dermatol. 1998;111(4):678–82.CrossRefGoogle Scholar
  30. 30.
    Yoshizawa J, Abe Y, Oiso N, Fukai K, Hozumi Y, Nakamura T, et al. Variants in melanogenesis-related genes associate with skin cancer risk among Japanese populations. J Dermatol. 2014;41(4):296–302.CrossRefGoogle Scholar
  31. 31.
    Fernandez LP, Milne RL, Pita G, Floristan U, Sendagorta E, Feito M, et al. Pigmentation-related genes and their implication in malignant melanoma susceptibility. Exp Dermatol. 2009;18(7):634–42.CrossRefGoogle Scholar
  32. 32.
    Bassi MT, Ramesar RS, Caciotti B, Winship IM, De Grandi A, Riboni M, et al. X-linked late-onset sensorineural deafness caused by a deletion involving OA1 and a novel gene containing WD-40 repeats. Am J Hum Genet. 1999;64(6):1604–16.CrossRefGoogle Scholar
  33. 33.
    Morell R, Spritz RA, Ho L, Pierpont J, Guo W, Friedman TB, et al. Apparent digenic inheritance of Waardenburg syndrome type 2 (WS2) and autosomal recessive ocular albinism (AROA). Hum Mol Genet. 1997;6(5):659–64.CrossRefGoogle Scholar
  34. 34.
    Somsen D, Davis-Keppen L, Crotwell P, Flanagan J, Munson P, Stein Q. Congenital nasal pyriform aperture stenosis and ocular albinism co-occurring in a sibship with a maternally-inherited 97 kb Xp22.2 microdeletion. Am J Med Genetics A. 2014;164a(5):1268–71.CrossRefGoogle Scholar
  35. 35.
    Rosenberg T, Schwartz M. X-linked ocular albinism: prevalence and mutations--a national study. Eur J Hum Genet. 1998;6(6):570–7.CrossRefGoogle Scholar
  36. 36.
    Garner A, Jay BS. Macromelanosomes in X-linked ocular albinism. Histopathology. 1980;4(3):243–54.CrossRefGoogle Scholar
  37. 37.
    Falletta P, Bagnato P, Bono M, Monticone M, Schiaffino MV, Bennett DC, et al. Melanosome-autonomous regulation of size and number: the OA1 receptor sustains PMEL expression. Pigment Cell Melanoma Res. 2014;27(4):565–79.CrossRefGoogle Scholar
  38. 38.
    Wei AH, Li W. Hermansky-Pudlak syndrome: pigmentary and non-pigmentary defects and their pathogenesis. Pigment Cell Melanoma Res. 2013;26(2):176–92.CrossRefGoogle Scholar
  39. 39.
    Gahl WA, Huizing M. Hermansky-Pudlak syndrome. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, et al., editors. GeneReviews(R). Seattle: University of Washington, Seattle, University of Washington, Seattle. All rights reserved; 1993.Google Scholar
  40. 40.
    Witkop CJ, Nunez Babcock M, Rao GH, Gaudier F, Summers CG, Shanahan F, et al. Albinism and Hermansky-Pudlak syndrome in Puerto Rico. Boletin de la Asociacion Medica de Puerto Rico. 1990;82(8):333–9.PubMedGoogle Scholar
  41. 41.
    Wei A, Lian S, Wang L, Li W. The first case report of a Chinese Hermansky-Pudlak syndrome patient with a novel mutation on HPS1 gene. J Dermatol Sci. 2009;56(2):130–2.CrossRefGoogle Scholar
  42. 42.
    Wei A, Wang Y, Long Y, Wang Y, Guo X, Zhou Z, et al. A comprehensive analysis reveals mutational spectra and common alleles in Chinese patients with oculocutaneous albinism. J Invest Dermatol. 2010;130(3):716–24.CrossRefGoogle Scholar
  43. 43.
    Suzuki T, Li W, Zhang Q, Karim A, Novak EK, Sviderskaya EV, et al. Hermansky-Pudlak syndrome is caused by mutations in HPS4, the human homolog of the mouse light-ear gene. Nat Genet. 2002;30(3):321–4.PubMedGoogle Scholar
  44. 44.
    Ammann S, Schulz A, Krageloh-Mann I, Dieckmann NM, Niethammer K, Fuchs S, et al. Mutations in AP3D1 associated with immunodeficiency and seizures define a new type of Hermansky-Pudlak syndrome. Blood. 2016;127(8):997–1006.CrossRefGoogle Scholar
  45. 45.
    Falcon-Perez JM, Nazarian R, Sabatti C, Dell'Angelica EC. Distribution and dynamics of Lamp1-containing endocytic organelles in fibroblasts deficient in BLOC-3. J Cell Sci. 2005;118(Pt 22):5243–55.CrossRefGoogle Scholar
  46. 46.
    Sitaram A, Marks MS. Mechanisms of protein delivery to melanosomes in pigment cells. Physiology (Bethesda). 2012;27(2):85–99.Google Scholar
  47. 47.
    Blumstein J, Faundez V, Nakatsu F, Saito T, Ohno H, Kelly RB. The neuronal form of adaptor protein-3 is required for synaptic vesicle formation from endosomes. J Neurosci Off J Soc Neurosci. 2001;21(20):8034–42.CrossRefGoogle Scholar
  48. 48.
    Dell’Angelica EC. The building BLOC(k)s of lysosomes and related organelles. Curr Opin Cell Biol. 2004;16(4):458–64.CrossRefGoogle Scholar
  49. 49.
    Kanazu M, Arai T, Sugimoto C, Kitaichi M, Akira M, Abe Y, et al. An intractable case of Hermansky-Pudlak syndrome. Internal Med (Tokyo, Japan). 2014;53(22):2629–34.CrossRefGoogle Scholar
  50. 50.
    Felipez LM, Gokhale R, Guandalini S. Hermansky-Pudlak syndrome: severe colitis and good response to infliximab. J Pediatr Gastroenterol Nutr. 2010;51(5):665–7.CrossRefGoogle Scholar
  51. 51.
    Enders A, Zieger B, Schwarz K, Yoshimi A, Speckmann C, Knoepfle EM, et al. Lethal hemophagocytic lymphohistiocytosis in Hermansky-Pudlak syndrome type II. Blood. 2006;108(1):81–7.CrossRefGoogle Scholar
  52. 52.
    Tardieu M, Lacroix C, Neven B, Bordigoni P, de Saint BG, Blanche S, et al. Progressive neurologic dysfunctions 20 years after allogeneic bone marrow transplantation for Chediak-Higashi syndrome. Blood. 2005;106(1):40–2.CrossRefGoogle Scholar
  53. 53.
    Shimazaki H, Honda J, Naoi T, Namekawa M, Nakano I, Yazaki M, et al. Autosomal-recessive complicated spastic paraplegia with a novel lysosomal trafficking regulator gene mutation. J Neurol Neurosurg Psychiatry. 2014;85(9):1024–8.CrossRefGoogle Scholar
  54. 54.
    Ménasché G, Ho CH, Sanal O, Feldmann J, Tezcan I, Ersoy F, et al. Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1). J Clin Investig. 2003;112(3):450–6.CrossRefGoogle Scholar
  55. 55.
    Langford GM, Molyneaux BJ. Myosin V in the brain: mutations lead to neurological defects. Brain Res Brain Res Rev. 1998;28(1–2):1–8.CrossRefGoogle Scholar
  56. 56.
    Lambert J, Naeyaert JM, Callens T, De Paepe A, Messiaen L. Human myosin V gene produces different transcripts in a cell type-specific manner. Biochem Biophys Res Commun. 1998;252(2):329–33.CrossRefGoogle Scholar
  57. 57.
    Bizario JC, Feldmann J, Castro FA, Menasche G, Jacob CM, Cristofani L, et al. Griscelli syndrome: characterization of a new mutation and rescue of T-cytotoxic activity by retroviral transfer of RAB27A gene. J Clin Immunol. 2004;24(4):397–410.CrossRefGoogle Scholar
  58. 58.
    Cagdas D, Ozgur TT, Asal GT, Tezcan I, Metin A, Lambert N, et al. Griscelli syndrome types 1 and 3: analysis of four new cases and long-term evaluation of previously diagnosed patients. Eur J Pediatr. 2012;171(10):1527–31.CrossRefGoogle Scholar
  59. 59.
    Tietz W. A syndrome of deaf-mutism associated with albinism showing dominant autosomal inheritance. Am J Hum Genet. 1963;15:259–64.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Smith SD, Kelley PM, Kenyon JB, Hoover D. Tietz syndrome (hypopigmentation/deafness) caused by mutation of MITF. J Med Genet. 2000;37(6):446–8.CrossRefGoogle Scholar
  61. 61.
    Gross A, Kunze J, Maier RF, Stoltenburg-Didinger G, Grimmer I, Obladen M. Autosomal-recessive neural crest syndrome with albinism, black lock, cell migration disorder of the neurocytes of the gut, and deafness: ABCD syndrome. Am J Med Genet. 1995;56(3):322–6.CrossRefGoogle Scholar
  62. 62.
    Verheij JB, Kunze J, Osinga J, van Essen AJ, Hofstra RM. ABCD syndrome is caused by a homozygous mutation in the EDNRB gene. Am J Med Genet. 2002;108(3):223–5.CrossRefGoogle Scholar
  63. 63.
    Cross HE, McKusick VA, Breen W. A new oculocerebral syndrome with hypopigmentation. J Pediatr. 1967;70(3):398–406.CrossRefGoogle Scholar
  64. 64.
    Tezcan I, Demir E, Asan E, Kale G, Muftuoglu SF, Kotiloglu E. A new case of oculocerebral hypopigmentation syndrome (cross syndrome) with additional findings. Clin Genet. 1997;51(2):118–21.CrossRefGoogle Scholar
  65. 65.
    White CP, Waldron M, Jan JE, Carter JE. Oculocerebral hypopigmentation syndrome associated with Bartter syndrome. Am J Med Genet. 1993;46(5):592–6.CrossRefGoogle Scholar
  66. 66.
    Okamura K, Yoshizawa J, Abe Y, Hanaoka K, Higashi N, Togawa Y, et al. Oculocutaneous albinism (OCA) in Japanese patients: five novel mutations. J Dermatol Sci. 2014;74(2):173–4.CrossRefGoogle Scholar
  67. 67.
    Van Gele M, Dynoodt P, Lambert J. Griscelli syndrome: a model system to study vesicular trafficking. Pigment Cell Melanoma Res. 2009;22(3):268–82.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of DermatologyYamagata University Faculty of MedicineYamagataJapan

Personalised recommendations