Lasers in Pigmentary Skin Disorders

  • Melissa A. Levoska
  • Tasneem F. Mohammad
  • Iltefat H. Hamzavi
Chapter
Part of the Updates in Clinical Dermatology book series (UCD)

Abstract

Laser therapy can treat disorders of both hyper- and hypopigmentation, including vitiligo, lentigines, and melasma. When choosing the appropriate laser for treatment, wavelength, spot size, pulse duration, and fluence must be carefully considered. We will discuss several different lasers: the xenon chloride excimer laser (EL), the fractional carbon dioxide laser (FCO2), the quality-switched ruby laser (QSRL), the Q-switched alexandrite laser (QSAL), and the Q-switched neodymium yttrium-aluminum-garnet laser (QS Nd:YAG). Additionally, we will review and summarize the results of combination trials involving laser therapy for pigmentary disorders. While nevi of Ota and lentigines respond well to laser therapy, post-inflammatory hyperpigmentation and melasma are often resistant to therapy, and combination regimens with topical therapies may be the most effective. The utilization of lasers in medicine and dermatology will continue to evolve with improvements in laser technology.

Keywords

Lasers Excimer Q-switched lasers Fractional lasers Vitiligo Lentigines Melasma Post-inflammatory hyperpigmentation Nevus of Ota 

References

  1. 1.
    Taylor A, Pawaskar M, Taylor SL, Balkrishnan R, Feldman SR. Prevalence of pigmentary disorders and their impact on quality of life: a prospective cohort study. J Cosmet Dermatol. 2008;7(3):164–8.PubMedGoogle Scholar
  2. 2.
    Fabi SG, Metelitsa AI. Future directions in cutaneous laser surgery. Dermatol Clin. 2014;32(1):61–9.PubMedGoogle Scholar
  3. 3.
    Gomez C, Costela A, Garcia-Moreno I, Llanes F, Teijon JM, Blanco MD. Skin laser treatments enhancing transdermal delivery of ALA. J Pharm Sci. 2011;100(1):223–31.PubMedGoogle Scholar
  4. 4.
    Baltas E, Csoma Z, Ignacz F, Dobozy A, Kemeny L. Treatment of vitiligo with the 308-nm xenon chloride excimer laser. Arch Dermatol. 2002;138(12):1619–20.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Asawanonda P, Anderson RR, Chang Y, Taylor CR. 308-nm excimer laser for the treatment of psoriasis: a dose-response study. Arch Dermatol. 2000;136(5):619–24.PubMedGoogle Scholar
  6. 6.
    Lee HI, Lim YY, Kim BJ, Kim MN, Min HJ, Hwang JH, et al. Clinicopathologic efficacy of copper bromide plus/yellow laser (578 nm with 511 nm) for treatment of melasma in Asian patients. Dermatol Surg. 2010;36(6):885–93.PubMedGoogle Scholar
  7. 7.
    McCoy S, Hanna M, Anderson P, McLennan G, Repacholi M. An evaluation of the copper-bromide laser for treating telangiectasia. Dermatol Surg. 1996;22(6):551–7.PubMedGoogle Scholar
  8. 8.
    Goldberg DJ, Nychay SG. Q-switched ruby laser treatment of nevus of Ota. J Dermatol Surg Oncol. 1992;18(9):817–21.PubMedGoogle Scholar
  9. 9.
    Sadighha A, Saatee S, Muhaghegh-Zahed G. Efficacy and adverse effects of Q-switched ruby laser on solar lentigines: a prospective study of 91 patients with Fitzpatrick skin type II, III, and IV. Dermatol Surg. 2008;34(11):1465–8.PubMedGoogle Scholar
  10. 10.
    Schoenewolf NL, Hafner J, Dummer R, Bogdan Allemann I. Laser treatment of solar lentigines on dorsum of hands: QS Ruby laser versus ablative CO2 fractional laser - a randomized controlled trial. Eur J Dermatol. 2015;25(2):122–6.PubMedGoogle Scholar
  11. 11.
    Tsao H, Busam K, Barnhill RL, Dover JS. Treatment of minocycline-induced hyperpigmentation with the Q-switched ruby laser. Arch Dermatol. 1996;132(10):1250–1.PubMedGoogle Scholar
  12. 12.
    Wiper A, Roberts DH, Schmitt M. Amiodarone-induced skin pigmentation: Q-switched laser therapy, an effective treatment option. Heart. 2007;93(1):15.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Collins P, Cotterill JA. Minocycline-induced pigmentation resolves after treatment with the Q-switched ruby laser. Br J Dermatol. 1996;135(2):317–9.PubMedGoogle Scholar
  14. 14.
    Raulin C, Schonermark MP, Greve B, Werner S. Q-switched ruby laser treatment of tattoos and benign pigmented skin lesions: a critical review. Ann Plast Surg. 1998;41(5):555–65.PubMedGoogle Scholar
  15. 15.
    Choudhary S, Elsaie ML, Leiva A, Nouri K. Lasers for tattoo removal: a review. Lasers Med Sci. 2010;25(5):619–27.PubMedGoogle Scholar
  16. 16.
    Chan HH, Leung RS, Ying SY, Lai CF, Kono T, Chua JK, et al. A retrospective analysis of complications in the treatment of nevus of Ota with the Q-switched alexandrite and Q-switched Nd:YAG lasers. Dermatol Surg. 2000;26(11):1000–6.PubMedGoogle Scholar
  17. 17.
    Sami L, Changzheng H, Yan L. Factors affecting response, number of laser sessions and complications in nevus of Ota treated by Q-switched alexandrite laser: a retrospective study. G Ital Dermatol Venereol. 2016;107(2):160–8.Google Scholar
  18. 18.
    Alster TS, Williams CM. Treatment of nevus of Ota by the Q-switched alexandrite laser. Dermatol Surg. 1995;21(7):592–6.PubMedGoogle Scholar
  19. 19.
    Ortonne JP, Pandya AG, Lui H, Hexsel D. Treatment of solar lentigines. J Am Acad Dermatol. 2006;54(5 Suppl 2):S262–71.PubMedGoogle Scholar
  20. 20.
    Rosenbach A, Lee SJ, Johr RH. Treatment of medium-brown solar lentigines using an alexandrite laser designed for hair reduction. Arch Dermatol. 2002;138(4):547–8.PubMedGoogle Scholar
  21. 21.
    Wang CC, Sue YM, Yang CH, Chen CK. A Comparison of Q-switched alexandrite laser and intense pulsed light for the treatment of freckles and lentigines in Asian persons: a randomized, physician-blinded, split-face comparative trial. J Am Acad Dermatol. 2006;54(5):804–10.PubMedGoogle Scholar
  22. 22.
    Nouri K, Bowes L, Chartier T, Romagosa R, Spencer J. Combination treatment of melasma with pulsed CO2 laser followed by Q-switched alexandrite laser: a pilot study. Dermatol Surg. 1999;25(6):494–7.PubMedGoogle Scholar
  23. 23.
    Fabi SG, Friedmann DP, Niwa Massaki AB, Goldman MP. A Randomized, split-face clinical trial of low-fluence Q-switched neodymium-doped yttrium aluminum garnet (1,064 nm) laser versus low-fluence Q-switched alexandrite laser (755 nm) for the treatment of facial melasma. Lasers Surg Med. 2014;46(7):531–7.PubMedGoogle Scholar
  24. 24.
    Nisar MS, Iyer K, Brodell RT, Lloyd JR, Shin TM, Ahmad A. Minocycline-induced hyperpigmentation: comparison of 3 Q-switched lasers to reverse its effects. Clin Cosmet Investig Dermatol. 2013;6:159–62.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Green D, Friedman KJ. Treatment of minocycline-induced cutaneous pigmentation with the Q-switched alexandrite laser and a review of the literature. J Am Acad Dermatol. 2001;44(2 Suppl):342–7.PubMedGoogle Scholar
  26. 26.
    Alster TS, Gupta SN. Minocycline-induced hyperpigmentation treated with a 755-nm Q-switched alexandrite laser. Dermatol Surg. 2004;30(9):1201–4.PubMedGoogle Scholar
  27. 27.
    Wee SA, Dover JS. Effective treatment of psychotropic drug-induced facial hyperpigmentation with a 755-nm Q-switched alexandrite laser. Dermatol Surg. 2008;34(11):1609–12.PubMedGoogle Scholar
  28. 28.
    Atkin DH, Fitzpatrick RE. Laser treatment of imipramine-induced hyperpigmentation. J Am Acad Dermatol. 2000;43(1 Pt 1):77–80.PubMedGoogle Scholar
  29. 29.
    Majid I, Imran S. Depigmentation therapy with Q-switched Nd: YAG laser in universal vitiligo. J Cutan Aesthet Surg. 2013;6(2):93–6.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Tse Y, Levine VJ, McClain SA, Ashinoff R. The removal of cutaneous pigmented lesions with the Q-switched ruby laser and the Q-switched neodymium: yttrium-aluminum-garnet laser. A comparative study. J Dermatol Surg Oncol. 1994;20(12):795–800.PubMedGoogle Scholar
  31. 31.
    Rashid T, Hussain I, Haider M, Haroon TS. Laser therapy of freckles and lentigines with quasi-continuous, frequency-doubled, Nd:YAG (532 nm) laser in Fitzpatrick skin type IV: a 24-month follow-up. J Cosmet Laser Ther. 2002;4(3–4):81–5.PubMedGoogle Scholar
  32. 32.
    Kilmer SL, Wheeland RG, Goldberg DJ, Anderson RR. Treatment of epidermal pigmented lesions with the frequency-doubled Q-switched Nd:YAG laser. A controlled, single-impact, dose-response, multicenter trial. Arch Dermatol. 1994;130(12):1515–9.PubMedGoogle Scholar
  33. 33.
    Wilde JL, English JC 3rd, Finley EM. Minocycline-induced hyperpigmentation. Treatment with the neodymium:YAG laser. Arch Dermatol. 1997;133(11):1344–6.PubMedGoogle Scholar
  34. 34.
    Cho SB, Kim JS, Kim MJ. Melasma treatment in Korean women using a 1064-nm Q-switched Nd:YAG laser with low pulse energy. Clin Exp Dermatol. 2009;34(8):e847–50.PubMedGoogle Scholar
  35. 35.
    Kim S, Cho KH. Treatment of facial postinflammatory hyperpigmentation with facial acne in Asian patients using a Q-switched neodymium-doped yttrium aluminum garnet laser. Dermatol Surg. 2010;36(9):1374–80.PubMedGoogle Scholar
  36. 36.
    Parker J, Hamzavi I, editors. Q-switched Nd: YAG 1064-nm laser for the treatment of acne-Induced postinflammatory hyperpigmentation. Journal of the American Academy of Dermatology; 2009: Mosby-Elsevier 360 Park Avenue South, New York, NY 10010–1710 USA.Google Scholar
  37. 37.
    Chan CS, Dover JS. Nd:YAG laser hair removal in Fitzpatrick skin types IV to VI. J Drugs Dermatol. 2013;12(3):366–7.PubMedGoogle Scholar
  38. 38.
    Shin, Y.S., et al., A comparative study of pulsed dye laser versus long pulsed Nd:YAG laser treatment in recalcitrant viral warts. J Dermatolog Treat, 2017. 28(5): p. 411–416.PubMedGoogle Scholar
  39. 39.
    Alshami MA. New application of the long-pulsed Nd-YAG laser as an ablative resurfacing tool for skin rejuvenation: a 7-year study. J Cosmet Dermatol. 2013;12(3):170–8.PubMedGoogle Scholar
  40. 40.
    Bjerring P, Christiansen K. Intense pulsed light source for treatment of small melanocytic nevi and solar lentigines. J Cutan Laser Ther. 2000;2(4):177–81.PubMedGoogle Scholar
  41. 41.
    Jones CE, Nouri K. Laser treatment for pigmented lesions: a review. J Cosmet Dermatol. 2006;5(1):9–13.PubMedGoogle Scholar
  42. 42.
    Shin J, Lee JS, Hann SK, Oh SH. Combination treatment by 10 600 nm ablative fractional carbon dioxide laser and narrowband ultraviolet B in refractory nonsegmental vitiligo: a prospective, randomized half-body comparative study. Br J Dermatol. 2012;166(3):658–61.PubMedGoogle Scholar
  43. 43.
    Helou J, Maatouk I, Obeid G, Moutran R, Stephan F, Tomb R. Fractional laser for vitiligo treated by 10,600 nm ablative fractional carbon dioxide laser followed by sun exposure. Lasers Surg Med. 2014;46(6):443–8.PubMedGoogle Scholar
  44. 44.
    Li L, Wu Y, Li L, Sun Y, Qiu L, Gao XH, et al. Triple combination treatment with fractional CO2 laser plus topical betamethasone solution and narrowband ultraviolet B for refractory vitiligo: a prospective, randomized half-body, comparative study. Dermatol Ther. 2015;28(3):131–4.PubMedGoogle Scholar
  45. 45.
    Vachiramon V, Chaiyabutr C, Rattanaumpawan P, Kanokrungsee S. Effects of a preceding fractional carbon dioxide laser on the outcome of combined local narrowband ultraviolet B and topical steroids in patients with vitiligo in difficult-to-treat areas. Lasers Surg Med. 2016;48(2):197–202.PubMedGoogle Scholar
  46. 46.
    Silpa-Archa N, Griffith JL, Williams MS, Lim HW, Hamzavi IH. Prospective comparison of recipient-site preparation with fractional carbon dioxide laser vs. dermabrasion and recipient-site dressing composition in melanocyte-keratinocyte transplantation procedure in vitiligo: a preliminary study. Br J Dermatol. 2016;174(4):895–7.PubMedGoogle Scholar
  47. 47.
    Arora P, Sarkar R, Garg VK, Arya L. Lasers for treatment of melasma and post-inflammatory hyperpigmentation. J Cutan Aesthet Surg. 2012;5(2):93–103.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Rokhsar CK, Fitzpatrick RE. The treatment of melasma with fractional photothermolysis: a pilot study. Dermatol Surg. 2005;31(12):1645–50.PubMedGoogle Scholar
  49. 49.
    Shin J, Kim M, Park SH, SH O. The effect of fractional carbon dioxide lasers on idiopathic guttate hypomelanosis: a preliminary study. J Eur Acad Dermatol Venereol. 2013;27(2):e243–6.PubMedGoogle Scholar
  50. 50.
    Goldust M, Mohebbipour A, Mirmohammadi R. Treatment of idiopathic guttate hypomelanosis with fractional carbon dioxide lasers. J Cosmet Laser Ther. 2013.  https://doi.org/10.3109/14764172.2013.803369.
  51. 51.
    Sklar LR, Burnett CT, Waibel JS, Moy RL, Ozog DM. Laser assisted drug delivery: a review of an evolving technology. Lasers Surg Med. 2014;46(4):249–62.PubMedGoogle Scholar
  52. 52.
    Tanzi EL, Lupton JR, Alster TS. Lasers in dermatology: four decades of progress. J Am Acad Dermatol. 2003;49(1):1–31. quiz -4PubMedGoogle Scholar
  53. 53.
    Hamzavi I, Lui H. The principles and medical applications of lasers and intense-pulsed light in dermatology. In: Lim HW, Honigsmann H, Hawk JLM, editors. Photodermatology. Basic and clinical dermatology. Boca Raton: CRC Press; 2007. p. 389–400.Google Scholar
  54. 54.
    Bianchi B, Campolmi P, Mavilia L, Danesi A, Rossi R, Cappugi P. Monochromatic excimer light (308 nm): an immunohistochemical study of cutaneous T cells and apoptosis-related molecules in psoriasis. J Eur Acad Dermatol Venereol. 2003;17(4):408–13.PubMedGoogle Scholar
  55. 55.
    de With A, Greulich KO. Wavelength dependence of laser-induced DNA damage in lymphocytes observed by single-cell gel electrophoresis. J Photochem Photobiol B. 1995;30(1):71–6.PubMedGoogle Scholar
  56. 56.
    Novak Z, Bonis B, Baltas E, Ocsovszki I, Ignacz F, Dobozy A, et al. Xenon chloride ultraviolet B laser is more effective in treating psoriasis and in inducing T cell apoptosis than narrow-band ultraviolet B. J Photochem Photobiol B. 2002;67(1):32–8.PubMedGoogle Scholar
  57. 57.
    Passeron T, Ostovari N, Zakaria W, Fontas E, Larrouy JC, Lacour JP, et al. Topical tacrolimus and the 308-nm excimer laser: a synergistic combination for the treatment of vitiligo. Arch Dermatol. 2004;140(9):1065–9.PubMedGoogle Scholar
  58. 58.
    Yu HS. Melanocyte destruction and repigmentation in vitiligo: a model for nerve cell damage and regrowth. J Biomed Sci. 2002;9(6 Pt 2):564–73.PubMedGoogle Scholar
  59. 59.
    Bordere AC, Lambert J, van Geel N. Current and emerging therapy for the management of vitiligo. Clin Cosmet Investig Dermatol. 2009;2:15–25.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Passeron T, Ortonne JP. Use of the 308-nm excimer laser for psoriasis and vitiligo. Clin Dermatol. 2006;24(1):33–42.PubMedGoogle Scholar
  61. 61.
    Spencer JM, Nossa R, Ajmeri J. Treatment of vitiligo with the 308-nm excimer laser: a pilot study. J Am Acad Dermatol. 2002;46(5):727–31.PubMedGoogle Scholar
  62. 62.
    Ostovari N, Passeron T, Zakaria W, Fontas E, Larouy JC, Blot JF, et al. Treatment of vitiligo by 308-nm excimer laser: an evaluation of variables affecting treatment response. Lasers Surg Med. 2004;35(2):152–6.PubMedGoogle Scholar
  63. 63.
    Hofer A, Hassan AS, Legat FJ, Kerl H, Wolf P. The efficacy of excimer laser (308 nm) for vitiligo at different body sites. J Eur Acad Dermatol Venereol. 2006;20(5):558–64.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Hadi S, Tinio P, Al-Ghaithi K, Al-Qari H, Al-Helalat M, Lebwohl M, et al. Treatment of vitiligo using the 308-nm excimer laser. Photomed Laser Surg. 2006;24(3):354–7.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Zhang XY, He YL, Dong J, JZ X, Wang J. Clinical efficacy of a 308 nm excimer laser in the treatment of vitiligo. Photodermatol Photoimmunol Photomed. 2010;26(3):138–42.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Taneja A, Trehan M, Taylor CR. 308-nm excimer laser for the treatment of localized vitiligo. Int J Dermatol. 2003;42(8):658–62.PubMedGoogle Scholar
  67. 67.
    Hong SB, Park HH, Lee MH. Short-term effects of 308-nm xenon-chloride excimer laser and narrow-band ultraviolet B in the treatment of vitiligo: a comparative study. J Korean Med Sci. 2005;20(2):273–8.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Do JE, Shin JY, Kim D-Y, Hann S-K, Oh SH. The effect of 308 nm excimer laser on segmental vitiligo: a retrospective study of 80 patients with segmental vitiligo. Photodermatol Photoimmunol Photomed. 2011;27(3):147–51.PubMedGoogle Scholar
  69. 69.
    Alhowaish AK, Dietrich N, Onder M, Fritz K. Effectiveness of a 308-nm excimer laser in treatment of vitiligo: a review. Lasers Med Sci. 2013;28(3):1035–41.PubMedGoogle Scholar
  70. 70.
    Greve B, Raulin C, Fischer E. Excimer laser treatment of vitiligo – critical retrospective assessment of own results and literature overview. J Dtsch Dermatol Ges. 2006;4(1):32–40.PubMedGoogle Scholar
  71. 71.
    Hofer A, Hassan AS, Legat FJ, Kerl H, Wolf P. Optimal weekly frequency of 308-nm excimer laser treatment in vitiligo patients. Br J Dermatol. 2005;152(5):981–5.PubMedGoogle Scholar
  72. 72.
    Sassi F, Cazzaniga S, Tessari G, Chatenoud L, Reseghetti A, Marchesi L, et al. Randomized controlled trial comparing the effectiveness of 308-nm excimer laser alone or in combination with topical hydrocortisone 17-butyrate cream in the treatment of vitiligo of the face and neck. Br J Dermatol. 2008;159(5):1186–91.PubMedGoogle Scholar
  73. 73.
    Kawalek AZ, Spencer JM, Phelps RG. Combined excimer laser and topical tacrolimus for the treatment of vitiligo: a pilot study. Dermatol Surg. 2004;30(2 Pt 1):130–5.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Park OJ, Park GH, Choi JR, Jung HJ, ES O, Choi JH, et al. A combination of excimer laser treatment and topical tacrolimus is more effective in treating vitiligo than either therapy alone for the initial 6 months, but not thereafter. Clin Exp Dermatol. 2016;41(3):236–41.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Bae JM, Yoo HJ, Kim H, Lee JH, Kim GM. Combination therapy with 308-nm excimer laser, topical tacrolimus, and short-term systemic corticosteroids for segmental vitiligo: a retrospective study of 159 patients. J Am Acad Dermatol. 2015;73(1):76–82.PubMedGoogle Scholar
  76. 76.
    Jang YH, Jung SE, Shin J, Kang HY. Triple combination of systemic corticosteroids, excimer laser, and topical tacrolimus in the treatment of recently developed localized vitiligo. Ann Dermatol. 2015;27(1):104–7.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Goldinger SM, Dummer R, Schmid P, Burg G, Seifert B, Lauchli S. Combination of 308-nm xenon chloride excimer laser and topical calcipotriol in vitiligo. J Eur Acad Dermatol Venereol. 2007;21(4):504–8.PubMedGoogle Scholar
  78. 78.
    SH O, Kim T, Jee H, Do JE, Lee JH. Combination treatment of non-segmental vitiligo with a 308-nm xenon chloride excimer laser and topical high-concentration tacalcitol: a prospective, single-blinded, paired, comparative study. J Am Acad Dermatol. 2011;65(2):428–30.Google Scholar
  79. 79.
    Lu-yan T, Wen-wen F, Lei-hong X, Yi J, Zhi-zhong Z. Topical tacalcitol and 308-nm monochromatic excimer light: a synergistic combination for the treatment of vitiligo. Photodermatol Photoimmunol Photomed. 2006;22(6):310–4.PubMedGoogle Scholar
  80. 80.
    Bae JM, Hong BY, Lee JH, Lee JH, Kim GM. The efficacy of 308-nm excimer laser/light (EL) and topical agent combination therapy versus EL monotherapy for vitiligo: a systematic review and meta-analysis of randomized controlled trials (RCTs). J Am Acad Dermatol. 2016;74(5):907–15.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Shin S, Hann SK, Combination OSH. Treatment with excimer laser and narrowband UVB light in vitiligo patients. Photodermatol Photoimmunol Photomed. 2016;32(1):28–33.PubMedGoogle Scholar
  82. 82.
    Al-Mutairi N, Manchanda Y, Al-Doukhi A, Al-Haddad A. Long-term results of split-skin grafting in combination with excimer laser for stable vitiligo. Dermatol Surg. 2010;36(4):499–505.PubMedGoogle Scholar
  83. 83.
    Tsuchiyama K, Watabe A, Sadayasu A, Onodera N, Kimura Y, Aiba S. Successful treatment of segmental vitiligo in children with the combination of 1-mm minigrafts and phototherapy. Dermatology. 2016;232(2):237–41.PubMedGoogle Scholar
  84. 84.
    Ebadi A, Rad MM, Nazari S, Fesharaki RJ, Ghalamkarpour F, Younespour S. The additive effect of excimer laser on non-cultured melanocyte-keratinocyte transplantation for the treatment of vitiligo: a clinical trial in an Iranian population. J Eur Acad Dermatol Venereol. 2015;29(4):745–51.PubMedGoogle Scholar
  85. 85.
    Soliman M, Samy NA, Abo Eittah M, Hegazy M. Comparative study between excimer light and topical antioxidant versus excimer light alone for treatment of vitiligo. J Cosmet Laser Ther. 2016;18(1):7–11.PubMedGoogle Scholar
  86. 86.
    Lan CC, HS Y, JH L, CS W, Lai HC. Irradiance, but not fluence, plays a crucial role in UVB-induced immature pigment cell development: new insights for efficient UVB phototherapy. Pigment Cell Melanoma Res. 2013;26(3):367–76.PubMedGoogle Scholar
  87. 87.
    Njoo MD, Spuls PI, Bos JD, Westerhof W, Bossuyt PM. Nonsurgical repigmentation therapies in vitiligo. Meta-analysis of the literature. Arch Dermatol. 1998;134(12):1532–40.PubMedGoogle Scholar
  88. 88.
    Linthorst Homan MW, Spuls PI, Nieuweboer-Krobotova L, de Korte J, Sprangers MA, Bos JD, et al. A randomized comparison of excimer laser versus narrow-band ultraviolet B phototherapy after punch grafting in stable vitiligo patients. J Eur Acad Dermatol Venereol. 2012;26(6):690–5.PubMedGoogle Scholar
  89. 89.
    Sun Y, Wu Y, Xiao B, Li L, Li L, Chen HD, et al. Treatment of 308-nm excimer laser on vitiligo: a systemic review of randomized controlled trials. J Dermatolog Treat. 2015;26(4):347–53.PubMedGoogle Scholar
  90. 90.
    Le Duff F, Fontas E, Giacchero D, Sillard L, Lacour JP, Ortonne JP, et al. 308-nm excimer lamp vs. 308-nm excimer laser for treating vitiligo: a randomized study. Br J Dermatol. 2010;163(1):188–92.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Omi T, Numano K. The role of the CO2 laser and fractional CO2 laser in dermatology. Laser Ther. 2014;23(1):49–60.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Geronemus RG. Fractional photothermolysis: current and future applications. Lasers Surg Med. 2006;38(3):169–76.PubMedGoogle Scholar
  93. 93.
    Manstein D, Herron GS, Sink RK, Tanner H, Anderson RR. Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury. Lasers Surg Med. 2004;34(5):426–38.PubMedGoogle Scholar
  94. 94.
    Shin MK, Jeong KH, IH O, Choe BK, Lee MH. Clinical features of idiopathic guttate hypomelanosis in 646 subjects and association with other aspects of photoaging. Int J Dermatol. 2011;50(7):798–805.PubMedGoogle Scholar
  95. 95.
    Sherling M, Friedman PM, Adrian R, Burns AJ, Conn H, Fitzpatrick R, et al. Consensus recommendations on the use of an erbium-doped 1,550-nm fractionated laser and its applications in dermatologic laser surgery. Dermatol Surg. 2010;36(4):461–9.PubMedGoogle Scholar
  96. 96.
    Taylor CR, Anderson RR. Ineffective treatment of refractory melasma and postinflammatory hyperpigmentation by Q-switched ruby laser. J Dermatol Surg Oncol. 1994;20(9):592–7.PubMedGoogle Scholar
  97. 97.
    Polla LL, Margolis RJ, Dover JS, Whitaker D, Murphy GF, Jacques SL, et al. Melanosomes are a primary target of Q-switched ruby laser irradiation in guinea pig skin. J Invest Dermatol. 1987;89(3):281–6.PubMedGoogle Scholar
  98. 98.
    Taneja A. Treatment of vitiligo. J Dermatolog Treat. 2002;13(1):19–25.PubMedGoogle Scholar
  99. 99.
    Njoo MD, Vodegel RM, Westerhof W. Depigmentation therapy in vitiligo universalis with topical 4-methoxyphenol and the Q-switched ruby laser. J Am Acad Dermatol. 2000;42(5 Pt 1):760–9.PubMedGoogle Scholar
  100. 100.
    AlGhamdi KM, Kumar A. Depigmentation therapies for normal skin in vitiligo universalis. J Eur Acad Dermatol Venereol. 2011;25(7):749–57.PubMedGoogle Scholar
  101. 101.
    Kim YJ, Chung BS, Choi KC. Depigmentation therapy with Q-switched ruby laser after tanning in vitiligo universalis. Dermatol Surg. 2001;27(11):969–70.PubMedGoogle Scholar
  102. 102.
    Komen L, Zwertbroek L, Burger SJ, van der Veen JP, de Rie MA, Wolkerstorfer A. Q-switched laser depigmentation in vitiligo, most effective in active disease. Br J Dermatol. 2013;169(6):1246–51.PubMedGoogle Scholar
  103. 103.
    Lowe NJ, Wieder JM, Sawcer D, Burrows P, Chalet M. Nevus of Ota: treatment with high energy fluences of the Q-switched ruby laser. J Am Acad Dermatol. 1993;29(6):997–1001.PubMedGoogle Scholar
  104. 104.
    Goldberg DJ. Laser treatment of pigmented lesions. Dermatol Clin. 1997;15(3):397–407.PubMedGoogle Scholar
  105. 105.
    Watanabe S, Takahashi H. Treatment of nevus of Ota with the Q-switched ruby laser. N Engl J Med. 1994;331(26):1745–50.PubMedGoogle Scholar
  106. 106.
    Kono T, Nozaki M, Chan HH, Mikashima Y. A Retrospective study looking at the long-term complications of Q-switched ruby laser in the treatment of nevus of Ota. Lasers Surg Med. 2001;29(2):156–9.PubMedGoogle Scholar
  107. 107.
    Ueda S, Isoda M, Imayama S. Response of naevus of Ota to Q-switched ruby laser treatment according to lesion colour. Br J Dermatol. 2000;142(1):77–83.PubMedGoogle Scholar
  108. 108.
    Goldberg DJ. Benign pigmented lesions of the skin. Treatment with the Q-switched ruby laser. J Dermatol Surg Oncol. 1993;19(4):376–9.PubMedGoogle Scholar
  109. 109.
    Kopera D, Hohenleutner U. Ruby laser treatment of melasma and postinflammatory hyperpigmentation. Dermatol Surg. 1995;21(11):994.PubMedGoogle Scholar
  110. 110.
    Stratigos AJ, Dover JS, Arndt KA. Laser treatment of pigmented lesions--2000: how far have we gone? Arch Dermatol. 2000;136(7):915–21.PubMedGoogle Scholar
  111. 111.
    Niwa Massaki AB, Eimpunth S, Fabi SG, Guiha I, Groff W, Fitzpatrick R. Treatment of melasma with the 1,927-nm fractional thulium fiber laser: a retrospective analysis of 20 cases with long-term follow-up. Lasers Surg Med. 2013;45(2):95–101.PubMedGoogle Scholar
  112. 112.
    Hilton S, Heise H, Buhren BA, Schrumpf H, Bolke E, Gerber PA. Treatment of melasma in Caucasian patients using a novel 694-nm Q-switched ruby fractional laser. Eur J Med Res. 2013;18:43.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Jang WS, Lee CK, Kim BJ, Kim MN. Efficacy of 694-nm Q-switched ruby fractional laser treatment of melasma in female Korean patients. Dermatol Surg. 2011;37(8):1133–40.PubMedGoogle Scholar
  114. 114.
    Tafazzoli A, Rostan EF, Goldman MP. Q-switched ruby laser treatment for postsclerotherapy hyperpigmentation. Dermatol Surg. 2000;26(7):653–6.PubMedGoogle Scholar
  115. 115.
    Imhof L, Dummer R, Dreier J, Kolm I, Barysch MJA. Prospective trial comparing Q-switched ruby laser and a triple combination skin-lightening cream in the treatment of solar lentigines. Dermatol Surg. 2016;42(7):853–7.PubMedGoogle Scholar
  116. 116.
    Negishi K, Akita H, Tanaka S, Yokoyama Y, Wakamatsu S, Matsunaga K. Comparative study of treatment efficacy and the incidence of post-inflammatory hyperpigmentation with different degrees of irradiation using two different quality-switched lasers for removing solar lentigines on Asian skin. J Eur Acad Dermatol Venereol. 2013;27(3):307–12.PubMedGoogle Scholar
  117. 117.
    Kono T, Manstein D, Chan HH, Nozaki M, Anderson RR. Q-switched ruby versus long-pulsed dye laser delivered with compression for treatment of facial lentigines in Asians. Lasers Surg Med. 2006;38(2):94–7.PubMedGoogle Scholar
  118. 118.
    Sicari MC, Lebwohl M, Baral J, Wexler P, Gordon RE, Phelps RG. Photoinduced dermal pigmentation in patients taking tricyclic antidepressants: histology, electron microscopy, and energy dispersive spectroscopy. J Am Acad Dermatol. 1999;40(2 Pt 2):290–3.PubMedGoogle Scholar
  119. 119.
    Ming ME, Bhawan J, Stefanato CM, McCalmont TH, Cohen LM. Imipramine-induced hyperpigmentation: four cases and a review of the literature. J Am Acad Dermatol. 1999;40(2 Pt 1):159–66.PubMedGoogle Scholar
  120. 120.
    Metelitsa AI, Nguyen GK, Lin AN. Imipramine-induced facial pigmentation: case report and literature review. J Cutan Med Surg. 2005;9(6):341–5.PubMedGoogle Scholar
  121. 121.
    Dereure O. Drug-induced skin pigmentation. Epidemiology, diagnosis and treatment. Am J Clin Dermatol. 2001;2(4):253–62.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Chan HHL, King WWK, Chan ESY, Mok CO, Ho WS, Van Krevel C, et al. vivo trial comparing patients' tolerance of Q-switched Alexandrite (QS Alex) and Q-switched neodymium:yttrium-aluminum-garnet (QS Nd:YAG) lasers in the treatment of nevus of Ota. Lasers Surg Med. 1999;24(1):24–8.PubMedGoogle Scholar
  123. 123.
    Bukvic Mokos Z, Lipozencic J, Ceovic R, Stulhofer Buzina D, Kostovic K. Laser therapy of pigmented lesions: pro and contra. Acta Dermatovenerol Croat. 2010;18(3):185–9.PubMedGoogle Scholar
  124. 124.
    Rao J, Fitzpatrick RE. Use of the Q-switched 755-nm alexandrite laser to treat recalcitrant pigment after depigmentation therapy for vitiligo. Dermatol Surg. 2004;30(7):1043–5.PubMedGoogle Scholar
  125. 125.
    Kang W, Lee E, Choi GS. Treatment of Ota's nevus by Q-switched alexandrite laser : therapeutic outcome in relation to clinical and histopathological findings. Eur J Dermatol. 1999;9(8):639–43.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Vano-Galvan S, Matarredona JA, Harto A, Escudero A, Pascual JC, Jaen P. Treatment of light-coloured solar lentigines with cryotherapy plus alexandrite laser. J Eur Acad Dermatol Venereol. 2009;23(7):850–2.PubMedGoogle Scholar
  127. 127.
    Trafeli JP, Kwan JM, Meehan KJ, Domankevitz Y, Gilbert S, Malomo K, et al. Use of a long-pulse alexandrite laser in the treatment of superficial pigmented lesions. Dermatol Surg. 2007;33(12):1477–82.PubMedGoogle Scholar
  128. 128.
    Angsuwarangsee S, Polnikorn N. Combined ultrapulse CO2 laser and Q-switched alexandrite laser compared with Q-switched alexandrite laser alone for refractory melasma: split-face design. Dermatol Surg. 2003;29(1):59–64.PubMedGoogle Scholar
  129. 129.
    Spicer MS, Goldberg DJ. Lasers in dermatology. J Am Acad Dermatol. 1996;34(1):1–25. quiz 6-8PubMedGoogle Scholar
  130. 130.
    Polnikorn N. Treatment of refractory dermal melasma with the MedLite C6 Q-switched Nd:YAG laser: two case reports. J Cosmet Laser Ther. 2008;10(3):167–73.PubMedGoogle Scholar
  131. 131.
    Lanigan SW. Failure of Q-switched Nd/YAG laser to repigment vitiligo. Clin Exp Dermatol. 1996;21(3):245–6.PubMedGoogle Scholar
  132. 132.
    Vachiramon V, Panmanee W, Techapichetvanich T, Chanprapaph K. Comparison of Q-switched Nd: YAG laser and fractional carbon dioxide laser for the treatment of solar lentigines in Asians. Lasers Surg Med. 2016;48(4):354–9.PubMedGoogle Scholar
  133. 133.
    Noh TK, Chung BY, Yeo UC, Chang S, Lee MW, Chang SE. Q-switched 660-nm versus 532-nm Nd: YAG laser for the treatment for facial lentigines in Asian patients: a prospective, randomized, double-blinded, split-face comparison pilot study. Dermatol Surg. 2015;41(12):1389–95.PubMedGoogle Scholar
  134. 134.
    Todd MM, Rallis TM, Gerwels JW, Hata TR. A Comparison of 3 lasers and liquid nitrogen in the treatment of solar lentigines: a randomized, controlled, comparative trial. Arch Dermatol. 2000;136(7):841–6.PubMedGoogle Scholar
  135. 135.
    Chan HH, Fung WK, Ying SY, Kono T. An in vivo trial comparing the use of different types of 532 nm Nd:YAG lasers in the treatment of facial lentigines in oriental patients. Dermatol Surg. 2000;26(8):743–9.PubMedGoogle Scholar
  136. 136.
    Li YT, Yang KC. Comparison of the frequency-doubled Q-switched Nd:YAG laser and 35% trichloroacetic acid for the treatment of face lentigines. Dermatol Surg. 1999;25(3):202–4.PubMedGoogle Scholar
  137. 137.
    Schmults CD, Phelps R, Goldberg DJ. Nonablative facial remodeling: erythema reduction and histologic evidence of new collagen formation using a 300-microsecond 1064-nm Nd:YAG laser. Arch Dermatol. 2004;140(11):1373–6.PubMedGoogle Scholar
  138. 138.
    Kim EH, Kim YC, Lee ES, Kang HY. The vascular characteristics of melasma. J Dermatol Sci. 2007;46(2):111–6.PubMedGoogle Scholar
  139. 139.
    Rodrigues M, Pandya AG. Melasma: clinical diagnosis and management options. Australas J Dermatol. 2015;56(3):151–63.PubMedGoogle Scholar
  140. 140.
    Zhou X, Gold MH, Lu Z, Li Y. Efficacy and safety of Q-switched 1,064-nm neodymium-doped yttrium aluminum garnet laser treatment of melasma. Dermatol Surg. 2011;37(7):962–70.PubMedGoogle Scholar
  141. 141.
    Chan NP, Ho SG, Shek SY, Yeung CK, Chan HHA. Case series of facial depigmentation associated with low fluence Q-switched 1,064 nm Nd:YAG laser for skin rejuvenation and melasma. Lasers Surg Med. 2010;42(8):712–9.PubMedGoogle Scholar
  142. 142.
    Hofbauer Parra CA, Careta MF, Valente NY, de Sanches Osorio NE, Torezan LA. Clinical and histopathologic assessment of facial melasma after low-fluence Q-switched neodymium-doped yttrium aluminium garnet laser. Dermatol Surg. 2016;42(4):507–12.PubMedGoogle Scholar
  143. 143.
    Kim MJ, Kim JS, Cho SB. Punctate leucoderma after melasma treatment using 1064-nm Q-switched Nd:YAG laser with low pulse energy. J Eur Acad Dermatol Venereol. 2009;23(8):960–2.PubMedGoogle Scholar
  144. 144.
    Wattanakrai P, Mornchan R, Eimpunth S. Low-fluence Q-switched neodymium-doped yttrium aluminum garnet (1,064 nm) laser for the treatment of facial melasma in Asians. Dermatol Surg. 2010;36(1):76–87.PubMedGoogle Scholar
  145. 145.
    Anderson RR, Margolis RJ, Watenabe S, Flotte T, Hruza GJ, Dover JS. Selective photothermolysis of cutaneous pigmentation by Q-switched Nd: YAG laser pulses at 1064, 532, and 355 nm. J Invest Dermatol. 1989;93(1):28–32.PubMedGoogle Scholar
  146. 146.
    Choi M, Choi JW, Lee SY, Choi SY, Park HJ, Park KC, et al. Low-dose 1064-nm Q-switched Nd:YAG laser for the treatment of melasma. J Dermatolog Treat. 2010;21(4):224–8.PubMedGoogle Scholar
  147. 147.
    Jeong SY, Shin JB, Yeo UC, Kim WS, Kim IH. Low-fluence Q-switched neodymium-doped yttrium aluminum garnet laser for melasma with pre- or post-treatment triple combination cream. Dermatol Surg. 2010;36(6):909–18.PubMedGoogle Scholar
  148. 148.
    Na SY, Cho S, Lee JH. Intense pulsed light and low-fluence Q-switched Nd:YAG laser treatment in melasma patients. Ann Dermatol. 2012;24(3):267–73.PubMedPubMedCentralGoogle Scholar
  149. 149.
    Yun WJ, Moon HR, Lee MW, Choi JH, Chang SE. Combination treatment of low-fluence 1,064-nm Q-switched Nd: YAG laser with novel intense pulse light in Korean melasma patients: a prospective, randomized, controlled trial. Dermatol Surg. 2014;40(8):842–50.PubMedGoogle Scholar
  150. 150.
    Kim HS, Jung HD, Kim HO, Lee JY, Park YM. Punctate leucoderma after low-fluence 1,064-nm quality-switched neodymium-doped yttrium aluminum garnet laser therapy successfully managed using a 308-nm excimer laser. Dermatol Surg. 2012;38(5):821–3.PubMedGoogle Scholar
  151. 151.
    Torok HM. A Comprehensive review of the long-term and short-term treatment of melasma with a triple combination cream. Am J Clin Dermatol. 2006;7(4):223–30.PubMedGoogle Scholar
  152. 152.
    Kauvar AN. Successful treatment of melasma using a combination of microdermabrasion and Q-switched Nd:YAG lasers. Lasers Surg Med. 2012;44(2):117–24.PubMedGoogle Scholar
  153. 153.
    Cunha PR, Pinto CA, Mattos CB, Cabrini DP, Tolosa JL. New insight in the treatment of refractory melasma: laser Q-switched Nd: YAG non-ablative fractionated followed by intense pulsed light. Dermatol Ther. 2015;28(5):296–9.PubMedGoogle Scholar
  154. 154.
    Ball Arefiev KL, Hantash BM. Advances in the treatment of melasma: a review of the recent literature. Dermatol Surg. 2012;38(7 Pt 1):971–84.PubMedGoogle Scholar
  155. 155.
    Choi CP, Yim SM, Seo SH, Ahn HH, Kye YC, Choi JE. Retreatment using a dual mode of low-fluence Q-switched and long-pulse Nd:YAG laser in patients with melasma aggravation after previous therapy. J Cosmet Laser Ther. 2015;17(3):129–34.PubMedGoogle Scholar
  156. 156.
    Greve, B., M.P. Schonermark, and C. Raulin, Minocycline-induced hyperpigmentation: treatment with the Qswitched Nd:YAG laser. Lasers Surg Med, 1998. 22(4): p. 223–7.PubMedGoogle Scholar
  157. 157.
    Agbai ONHI, Jagdeo J. Laser treatments for post-inflammatory hyperpigmentation: a systematic review. JAMA Dermatol. (Accepted).Google Scholar
  158. 158.
    Sheth VM, Pandya AG. Melasma: a comprehensive update: part II. J Am Acad Dermatol. 2011;65(4):699–714. quiz 5PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Melissa A. Levoska
    • 1
  • Tasneem F. Mohammad
    • 1
  • Iltefat H. Hamzavi
    • 1
  1. 1.Department of Dermatology, Henry Ford HospitalDetroitUSA

Personalised recommendations