Current Views on Melasma

Chapter
Part of the Updates in Clinical Dermatology book series (UCD)

Abstract

Melasma is a common acquired hyperpigmentary disorder of the face mostly in women with darker skin types. Chronic sun exposure, genetic influences, and female sex hormones have been addressed as major etiological factors. The pathogenesis of melasma is not fully understood, but current studies suggest that endogenous or exogenous stimuli may stimulate the microenvironment, leading to the release of various mediators that activate melanocytes in the development of melasma. In melasma skin, not only melanocytes but other actors, especially dermal components such as photoaged fibroblasts or vasculature, most likely play a key role in the development and in relapses of melasma. Treatment of melasma is difficult because it is recalcitrant to therapy and frequently recurs, even after successful clearance. There are various treatment options, usually in combination with topical depigmenting agents, laser or light therapies, as well as systemic tranexamic acid.

Keywords

Melasma UV Sex hormones Fibroblasts Vasculature Tranexamic acid Facial pigmentation 

References

  1. 1.
    Sheth VM, Pandya AG. Melasma: a comprehensive update: part I. J Am Acad Dermatol. 2011;65(4):689–97.CrossRefGoogle Scholar
  2. 2.
    Hexsel D, Rodrigues T, Dal’forno T, Zechmeister-Prado D, Lima M. Melasma and pregnancy in southern Brazil. J Eur Acad Dermatol Venereol. 2009;23(3):367–8.CrossRefGoogle Scholar
  3. 3.
    Moin A, Jabery Z, Fallah N. Prevalence and awareness of melasma during pregnancy. Int J Dermatol. 2006;45(3):285–8.CrossRefGoogle Scholar
  4. 4.
    Sarkar R, Puri P, Jain RK, Singh A, Desai A. Melasma in men: a clinical, aetiological and histological study. J Eur Acad Dermatol Venereol. 2010;24(7):768–72.CrossRefGoogle Scholar
  5. 5.
    Ortonne JP, Arellano I, Berneburg M, Cestari T, Chan H, Grimes P, et al. A global survey of the role of ultraviolet radiation and hormonal influences in the development of melasma. J Eur Acad Dermatol Venereol. 2009;23(11):1254–62.CrossRefGoogle Scholar
  6. 6.
    Tamega AA, Miot LD, Bonfietti C, Gige TC, Marques ME, Miot HA. Clinical patterns and epidemiological characteristics of facial melasma in Brazilian women. J Eur Acad Dermatol Venereol. 2013;27(2):151–6.CrossRefGoogle Scholar
  7. 7.
    Hexsel D, Lacerda DA, Cavalcante AS, Filho CA, Kalil CL, Ayres EL, et al. Epidemiology of melasma in Brazilian patients: a multicenter study. Int J Dermatol. 2014;53(4):440–4.CrossRefGoogle Scholar
  8. 8.
    Achar A, Rathi SK. Melasma: a clinico-epidemiological study of 312 cases. Indian J Dermatol. 2011;56(4):380–2.CrossRefGoogle Scholar
  9. 9.
    Sanchez NP, Pathak MA, Sato S, Fitzpatrick TB, Sanchez JL, Mihm MC Jr. Melasma: a clinical, light microscopic, ultrastructural, and immunofluorescence study. J Am Acad Dermatol. 1981;4(6):698–710.CrossRefGoogle Scholar
  10. 10.
    Madke B, Kar S, Yadav N, Bonde P. Extrafacial melasma over forearms. Indian Dermatol Online J. 2016;7(4):344–5.CrossRefGoogle Scholar
  11. 11.
    Grimes PE, Yamada N, Bhawan J. Light microscopic, immunohistochemical, and ultrastructural alterations in patients with melasma. Am J Dermatopathol. 2005;27(2):96–101.CrossRefGoogle Scholar
  12. 12.
    Sarvjot V, Sharma S, Mishra S, Singh A. Melasma: a clinicopathological study of 43 cases. Indian J Pathol Microbiol. 2009;52(3):357–9.CrossRefGoogle Scholar
  13. 13.
    Lawrence N, Cox SE, Brody HJ. Treatment of melasma with Jessner’s solution versus glycolic acid: a comparison of clinical efficacy and evaluation of the predictive ability of Wood’s light examination. J Am Acad Dermatol. 1997;36(4):589–93.CrossRefGoogle Scholar
  14. 14.
    Kang HY, Bahadoran P, Suzuki I, Zugaj D, Khemis A, Passeron T, et al. Vivo reflectance confocal microscopy detects pigmentary changes in melasma at a cellular level resolution. Exp Dermatol. 2010;19(8):e228–33.CrossRefGoogle Scholar
  15. 15.
    Kang WH, Yoon KH, Lee ES, Kim J, Lee KB, Yim H, et al. Melasma: histopathological characteristics in 56 Korean patients. Br J Dermatol. 2002;146(2):228–37.CrossRefGoogle Scholar
  16. 16.
    Kim EH, Kim YC, Lee ES, Kang HY. The vascular characteristics of melasma. J Dermatol Sci. 2007;46(2):111–6.CrossRefGoogle Scholar
  17. 17.
    Noh TK, Choi SJ, Chung BY, Kang JS, Lee JH, Lee MW, et al. Inflammatory features of melasma lesions in Asian skin. J Dermatol. 2014;41(9):788–94.CrossRefGoogle Scholar
  18. 18.
    Lakhdar H, Zouhair K, Khadir K, Essari A, Richard A, Seite S, et al. Evaluation of the effectiveness of broad-spectrum sunscreen in the prevention of chloasma in pregnant women. J Eur Acad Dermatol Venereol. 2007;21(6):738–42.CrossRefGoogle Scholar
  19. 19.
    V_azquez M, S_anchez JL. The efficacy of a broad-spectrum sunscreen in the treatment of melasma. Cutis 1983;32(1):92, 95–6.Google Scholar
  20. 20.
    Hernández-Barrera R, Torres-Alvarez B, Castanedo-Cazares JP, Oros-Ovalle C, Moncada B. Solar elastosis and presence of mast cells as key features in the pathogenesis of melasma. Clin Exp Dermatol. 2008;33(3):305–8.CrossRefGoogle Scholar
  21. 21.
    Suzuki I, Kato T, Motokawa T, Tomita Y, Nakamura E, Katagiri T. Increase of pro-opiomelanocortin mRNA prior to tyrosinase, tyrosinase-related protein 1, dopachrome tautomerase, Pmel-17/gp100, and P-protein mRNA in human skin after ultraviolet B irradiation. J Invest Dermatol. 2002;118(1):73–8.CrossRefGoogle Scholar
  22. 22.
    Im S, Kim J. On WY, Kang WH. Increased expression of alpha-melanocyte-stimulating hormone in the lesional skin of melasma. Br J Dermatol. 2002;146(1):165–7.CrossRefGoogle Scholar
  23. 23.
    Kovacs D, Cardinali G, Aspite N, Cota C, Luzi F, Bellei B, et al. Role of fibroblast-derived growth factors in regulating hyperpigmentation of solar lentigo. Br J Dermatol. 2010;163(5):1020–7.CrossRefGoogle Scholar
  24. 24.
    Chen N, Hu Y, Li WH, Eisinger M, Seiberg M, Lin CB. The role of keratinocyte growth factor in melanogenesis: a possible mechanism for the initiation of solar lentigines. Exp Dermatol 2010;19(10):865–872.CrossRefGoogle Scholar
  25. 25.
    Kang HY, Hwang JS, Lee JY, Ahn JH, Kim JY, Lee ES, et al. The dermal stem cell factor and c-kit are overexpressed in melasma. Br J Dermatol. 2006;154(6):1094–9.CrossRefGoogle Scholar
  26. 26.
    Imokawa G. Autocrine and paracrine regulation of melanocytes in human skin and in pigmentary disorders. Pigment Cell Res. 2004;17(2):96–110.CrossRefGoogle Scholar
  27. 27.
    Kim YJ, Kang HY. Pigmentation after using topical tacrolimus to treat lichen sclerosus: possible role of stem cell factor. J Am Acad Dermatol. 2007;57(5 Suppl):S125–7.CrossRefGoogle Scholar
  28. 28.
    Hasegawa K, Fujiwara R, Sato K, Shin J, Kim SJ, Kim M, et al. Possible involvement of keratinocyte growth factor in the persistence of hyperpigmentation in both human facial solar lentigines and melasma. Ann Dermatol. 2015;27(5):626–9.CrossRefGoogle Scholar
  29. 29.
    Kim M, Han JH, Kim JH, Park TJ, Kang HY. Secreted frizzled-related protein 2 (sFRP2) functions as a Melanogenic stimulator; the role of sFRP2 in UV-induced Hyperpigmentary disorders. J Invest Dermatol. 2016;136(1):236–44.CrossRefGoogle Scholar
  30. 30.
    Choi JR, Won CH, ES O, An J, Chang SE. The degree of erythema in melasma lesion is associated with the severity of disease and the response to the low-fluence Q-switched 1064-nm Nd:YAG laser treatment. J Dermatolog Treat. 2013;24(4):297–9.CrossRefGoogle Scholar
  31. 31.
    Regazzetti C, De Donatis GM, Ghorbel HH, Cardot-Leccia N, Ambrosetti D, Bahadoran P, et al. Endothelial cells promote pigmentation through Endothelin receptor B activation. J Invest Dermatol. 2015;135(12):3096–104.CrossRefGoogle Scholar
  32. 32.
    Park JY, Kim M, Park TJ, Kang HY. TGFβ1 derived from endothelial cells inhibits melanogenesis. Pigment Cell Melanoma Res. 2016;29(4):477–80.CrossRefGoogle Scholar
  33. 33.
    Lee DJ, Park KC, Ortonne JP, Kang HY. Pendulous melanocytes: a characteristic feature of melasma and how it may occur. Br J Dermatol. 2012;166(3):684–6.CrossRefGoogle Scholar
  34. 34.
    Torres-Álvarez B, Mesa-Garza IG, Castanedo- Cázares JP, Fuentes-Ahumada C, Oros-Ovalle C, Navarrete-Solis J, et al. Histochemical and immunohistochemical study in melasma: evidence of damage in the basal membrane. Am J Dermatopathol. 2011;33(3):291–5.CrossRefGoogle Scholar
  35. 35.
    Iriyama S, Ono T, Aoki H, Amano S. Hyperpigmentation in human solar lentigo is promoted by heparanase-induced loss of heparan sulfate chains at the dermal–epidermal junction. J Dermatol Sci. 2011;64(3):223–8.CrossRefGoogle Scholar
  36. 36.
    Park GH, Lee JH, Choi JR, Chang SE. Does altered basement membrane of melasma lesion affect treatment outcome in Asian skin? Am J Dermatopathol. 2013;35(1):137–8.CrossRefGoogle Scholar
  37. 37.
    Lieberman R, Moy L. Estrogen receptor expression in melasma: results from facial skin of affected patients. J Drugs Dermatol. 2008;7(5):463–5.PubMedGoogle Scholar
  38. 38.
    Jian D, Jiang D, Su J, Chen W, Hu X, Kuang Y, et al. Diethylstilbestrol enhances melanogenesis via cAMP-PKA-mediating upregulation of tyrosinase and MITF in mouse B16 melanoma cells. Steroids. 2011;76(12):1297–304.CrossRefGoogle Scholar
  39. 39.
    Kim NH, Cheong KA, Lee TR, Lee AY. PDZK1 upregulation in estrogen-related hyperpigmentation in melasma. J Invest Dermatol. 2012;132(11):2622–31.CrossRefGoogle Scholar
  40. 40.
    Kippenberger S, Loitsch S, Solano F, Bernd A, Kaufmann R. Quantification of tyrosinase, TRP-1, and Trp-2 transcripts in human melanocytes by reverse transcriptase-competitive multiplex PCR--regulation by steroid hormones. J Invest Dermatol. 1998;110(4):364–7.PubMedGoogle Scholar
  41. 41.
    Jee SH, Lee SY, Chiu HC, Chang CC, Chen TJ. Effects of estrogen and estrogen receptor in normal human melanocytes. Biochem Biophys Res Commun. 1994;199(3):1407–12.CrossRefGoogle Scholar
  42. 42.
    Kang HY, Suzuki I, Lee DJ, Ha J, Reiniche P, Aubert J, et al. Transcriptional profiling shows altered expression of wnt pathway- and lipid metabolism-related genes as well as melanogenesis-related genes in melasma. J Invest Dermatol. 2011;131(8):1692–700.CrossRefGoogle Scholar
  43. 43.
    Park TJ, Kim M, Kim H, Park SY, Park KC, Ortonne JP, et al. Wnt inhibitory factor (WIF)-1 promotes melanogenesis in normal human melanocytes. Pigment Cell Melanoma Res. 2014;27(1):72–81.CrossRefGoogle Scholar
  44. 44.
    Kim NH, Choi SH, Kim CH, Lee CH, Lee TR, Lee AY. Reduced MiR-675 in exosome in H19 RNA-related melanogenesis via MITF as a direct target. J Invest Dermatol. 2014;134(4):1075–82.CrossRefGoogle Scholar
  45. 45.
    Kang WH, Chun SC, Lee S. Intermittent therapy for melasma in Asian patients with combined topical agents (retinoic acid, hydroquinone and hydrocortisone): clinical and histological studies. J Dermatol. 1998;25(9):587–9.CrossRefGoogle Scholar
  46. 46.
    Chan R, Park KC, Lee MH, Lee ES, Chang SE, Leow YH, et al. A randomized controlled trial of the efficacy and safety of a fixed triple combination (fluocinolone acetonide 0.01%, hydroquinone 4%, tretinoin 0.05%) compared with hydroquinone 4% cream in Asian patients with moderate to severe melasma. Br J Dermatol. 2008;159(3):697–703.PubMedGoogle Scholar
  47. 47.
    Na JI, Choi SY, Yang SH, Choi HR, Kang HY, Park KC. Effect of tranexamic acid on melasma: a clinical trial with histological evaluation. J Eur Acad Dermatol Venereol. 2013;27(8):1035–9.CrossRefGoogle Scholar
  48. 48.
    Kim SJ, Park JY, Shibata T, Fujiwara R, Kang HY. Efficacy and possible mechanisms of topical tranexamic acid in melasma. Clin Exp Dermatol. 2016;41(5):480–5.CrossRefGoogle Scholar
  49. 49.
    Tay EY, Gan EY, Tan VW, Lin Z, Liang Y, Lin F, et al. Pilot study of an automated method to determine Melasma area and severity index. Br J Dermatol. 2015;172(6):1535–40.CrossRefGoogle Scholar
  50. 50.
    Cameli N, Abril E, Agozzino M, Mariano M. Clinical and instrumental evaluation of the efficacy of a new depigmenting agent containing a combination of a retinoid, a phenolic agent and an antioxidant for the treatment of solar lentigines. Dermatology. 2015;230(4):360–6.CrossRefGoogle Scholar
  51. 51.
    Cho M, Lee DH, Kim Y, Koh W, Chung JH, Kim HC, et al. Development and clinical validation of a novel photography-based skin pigmentation evaluation system: a comparison with the calculated consensus of dermatologists. Int J Cosmet Sci. 2016;38(4):399–408.CrossRefGoogle Scholar
  52. 52.
    Newcomer VD, Lindberg MC, Sternberg THA. Melanosis of the face (“chloasma”). Arch Dermatol. 1961;83:284–99.CrossRefGoogle Scholar
  53. 53.
    Pathak MA, Riley FC, Fitzpatrick TB. Melanogenesis in human skin following exposure to long-wave ultraviolet and visible light. J Invest Dermatol. 1962;39:435–43.CrossRefGoogle Scholar
  54. 54.
    Grimes PE. Melasma. Etiologic and therapeutic considerations. Arch Dermatol. 1995;131(12):1453–7.CrossRefGoogle Scholar
  55. 55.
    Westerhof W, Kooyers TJ. Hydroquinone and its analogues in dermatology - a potential health risk. J Cosmet Dermatol. 2005;4(2):55–9.CrossRefGoogle Scholar
  56. 56.
    Nordlund JJ, Grimes PE, Ortonne JP. The safety of hydroquinone. J Eur Acad Dermatol Venereol. 2006;20(7):781–7.CrossRefGoogle Scholar
  57. 57.
    Kang HY, Valerio L, Bahadoran P, Ortonne JP. The role of topical retinoids in the treatment of pigmentary disorders: an evidence-based review. Am J Clin Dermatol. 2009;10(4):251–60.CrossRefGoogle Scholar
  58. 58.
    Ferreira Cestari T, Hassun K, Sittart A, de Lourdes Viegas MA. Comparison of triple combination cream and hydroquinone 4% cream for the treatment of moderate to severe facial melasma. J Cosmet Dermatol. 2007;6(1):36–9.CrossRefGoogle Scholar
  59. 59.
    Chakraborty AK, Funasaka Y, Komoto M, Ichihashi M. Effect of arbutin on melanogenic proteins in human melanocytes. Pigment Cell Res. 1998;11(4):206–12.CrossRefGoogle Scholar
  60. 60.
    Ertam I, Mutlu B, Unal I, Alper S, Kivcak B, Ozer O. Efficiency of ellagic acid and arbutin in melasma: a randomized, prospective, open-label study. J Dermatol. 2008;35(9):570–4.CrossRefGoogle Scholar
  61. 61.
    Nazzaro-Porro M, Passi S. Identification of tyrosinase inhibitors in cultures of Pityrosporum. J Invest Dermatol. 1978;71(3):205–8.CrossRefGoogle Scholar
  62. 62.
    Kim DS, Kim SY, Park SH, Choi YG, Kwon SB, Kim MK, et al. Inhibitory effects of 4-n-butylresorcinol on tyrosinase activity and melanin synthesis. Biol Pharm Bull. 2005;28(12):2216–9.CrossRefGoogle Scholar
  63. 63.
    Huh SY, Shin JW, Na JI, Huh CH, Youn SW, Park KC. Efficacy and safety of liposome-encapsulated 4-n-butylresorcinol 0.1% cream for the treatment of melasma: a randomized controlled split-face trial. J Dermatol. 2010;37(4):311–5.CrossRefGoogle Scholar
  64. 64.
    Ros JR, Rodriguez-Lopez JN, Garcia-Canovas F. Effect of L-ascorbic acid on the monophenolase activity of tyrosinase. Biochem J. 1993;295(Pt 1):309–12.CrossRefGoogle Scholar
  65. 65.
    Huh CH, Seo KI, Park JY, Lim JG, Eun HC, Park KCA. Randomized, double-blind, placebo-controlled trial of vitamin C iontophoresis in melasma. Dermatology. 2003;206(4):316–20.CrossRefGoogle Scholar
  66. 66.
    Ichihashi M, Funasaka Y, Ohashi A, Chacraborty A, Ahmed NU, Ueda M, et al. The inhibitory effect of DL-alpha-tocopheryl ferulate in lecithin on melanogenesis. Anticancer Res. 1999;19(5A):3769–74.PubMedGoogle Scholar
  67. 67.
    Yamamura T, Onishi J, Nishiyama T. Antimelanogenic activity of hydrocoumarins in cultured normal human melanocytes by stimulating intracellular glutathione synthesis. Arch Dermatol Res. 2002;294(8):349–54.CrossRefGoogle Scholar
  68. 68.
    Saliou C, Kitazawa M, McLaughlin L, Yang JP, Lodge JK, Tetsuka T, et al. Antioxidants modulate acute solar ultraviolet radiation-induced NF-kappa-B activation in a human keratinocyte cell line. Free Radic Biol Med. 1999;26(1–2):174–83.CrossRefGoogle Scholar
  69. 69.
    Kasraee B. Depigmentation of brown Guinea pig skin by topical application of methimazole. J Invest Dermatol. 2002;118(1):205–7.CrossRefGoogle Scholar
  70. 70.
    Kasraee B. Peroxidase-mediated mechanisms are involved in the melanocytotoxic and melanogenesis-inhibiting effects of chemical agents. Dermatology. 2002;205(4):329–39.CrossRefGoogle Scholar
  71. 71.
    Robb EL, Page MM, Wiens BE, Stuart JA. Molecular mechanisms of oxidative stress resistance induced by resveratrol: specific and progressive induction of MnSOD. Biochem Biophys Res Commun. 2008;367(2):406–12.CrossRefGoogle Scholar
  72. 72.
    Seiberg M, Paine C, Sharlow E, Andrade-Gordon P, Costanzo M, Eisinger M, et al. Inhibition of melanosome transfer results in skin lightening. J Invest Dermatol. 2000;115(2):162–7.CrossRefGoogle Scholar
  73. 73.
    Seiberg M, Paine C, Sharlow E, Andrade-Gordon P, Costanzo M, Eisinger M, et al. The protease-activated receptor 2 regulates pigmentation via keratinocyte-melanocyte interactions. Exp Cell Res. 2000;254(1):25–32.CrossRefGoogle Scholar
  74. 74.
    Hakozaki T, Minwalla L, Zhuang J, Chhoa M, Matsubara A, Miyamoto K, et al. The effect of niacinamide on reducing cutaneous pigmentation and suppression of melanosome transfer. Br J Dermatol. 2002;147(1):20–31.CrossRefGoogle Scholar
  75. 75.
    Ando H, Ryu A, Hashimoto A, Oka M, Ichihashi M. Linoleic acid and alpha-linolenic acid lightens ultraviolet-induced hyperpigmentation of the skin. Arch Dermatol Res. 1998;290(7):375–81.CrossRefGoogle Scholar
  76. 76.
    Mishima Y, Imokawa G. Selective aberration and pigment loss in melanosomes of malignant melanoma cells in vitro by glycosylation inhibitors: premelanosomes as glycoprotein. J Invest Dermatol. 1983;81(2):106–14.CrossRefGoogle Scholar
  77. 77.
    Franchi J, Coutadeur MC, Marteau C, Mersel M, Kupferberg A. Depigmenting effects of calcium D-pantetheine-S-sulfonate on human melanocytes. Pigment Cell Res. 2000;13(3):165–71.CrossRefGoogle Scholar
  78. 78.
    Li YH, Chen JZ, Wei HC, Wu Y, Liu M, Xu YY, et al. Efficacy and safety of intense pulsed light in treatment of melasma in Chinese patients. Dermatol Surg. 2008;34(5):693–700. discussion 700-1PubMedGoogle Scholar
  79. 79.
    Negishi K, Kushikata N, Tezuka Y, Takeuchi K, Miyamoto E, Wakamatsu S. Study of the incidence and nature of “very subtle epidermal melasma” in relation to intense pulsed light treatment. Dermatol Surg. 2004;30(6):881–6. discussion 6PubMedGoogle Scholar
  80. 80.
    Lee WR, Shen SC, Pai MH, Yang HH, Yuan CY, Fang JY. Fractional laser as a tool to enhance the skin permeation of 5-aminolevulinic acid with minimal skin disruption: a comparison with conventional erbium: Yag laser. J Control Release. 2010 Jul 14;145(2):124–33.CrossRefGoogle Scholar
  81. 81.
    Rokhsar CK, Fitzpatrick RE. The treatment of melasma with fractional photothermolysis: a pilot study. Dermatol Surg. 2005;31(12):1645–50.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Kroon MW, Wind BS, Beek JF, van der Veen JP, Nieuweboer-Krobotová L, Bos JD, et al. Nonablative 1550-nm fractional laser therapy versus triple topical therapy for the treatment of melasma: a randomized controlled pilot study. J Am Acad Dermatol. 2011;64(3):516–23.CrossRefGoogle Scholar
  83. 83.
    Kim JH, Kim H, Park HC, Kim IH. Subcellular selective photothermolysis of melanosomes in adult zebrafish skin following 1064-nm Q-switched Nd:YAG laser irradiation. J Invest Dermatol. 2010;130(9):2333–5.CrossRefGoogle Scholar
  84. 84.
    Wattanakrai P, Mornchan R, Eimpunth S. Low-fluence Q-switched neodymium-doped yttrium aluminum garnet (1,064 nm) laser for the treatment of facial melasma in Asians. Dermatol Surg. 2010;36(1):76–87.  https://doi.org/10.1111/j.1524-4725.2009.01383.x.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Passeron T, Fontas E, Kang HY, Bahadoran P, Lacour JP, Ortonne JP. Melasma treatment with pulsed-dye laser and triple combination cream: a prospective, randomized, single-blind, split-face study. Arch Dermatol. 2011;147(9):1106–8.CrossRefGoogle Scholar
  86. 86.
    Lee HI, Lim YY, Kim BJ, Kim MN, Min HJ, Hwang JH, et al. Clinicopathologic efficacy of copper bromide plus/yellow laser (578 nm with 511 nm) for treatment of melasma in Asian patients. Dermatol Surg. 2010;36(6):885–93.CrossRefGoogle Scholar
  87. 87.
    Ferrara N. Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol Biol Cell. 2010;21(5):687–90.CrossRefGoogle Scholar
  88. 88.
    Bastaki M, Nelli EE, Dell’Era P, Rusnati M, Molinari-Tosatti MP, Parolini S, et al. Basic fibroblast growth factor-induced angiogenic phenotype in mouse endothelium. A study of aortic and microvascular endothelial cell lines. Arterioscler Thromb Vasc Biol. 1997;17(3):454–64.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of DermatologySeoul National University Bundang HospitalSeongnamKorea
  2. 2.Department of DermatologyAjou University School of MedicineSuwonKorea

Personalised recommendations