Skip to main content

High-Temperature Low Cycle Fatigue Resistance of Inconel 713LC Coated with Novel Thermal Barrier Coating

  • Conference paper
  • First Online:
  • 801 Accesses

Abstract

Inconel 713LC was developed in the 1950s and is still widely used in power generation especially because of favourable price in conjunction with satisfying properties. However, the need for higher efficiency of high-temperature facilities leads to increase operating temperature that causes severe degradation of the material. In order to enhance the life-time of material, the protective coatings are applied. For the purpose of this study, nineteen cylindrical specimens were cut from rods manufactured using investment castings technique and subsequently, 10 specimens were coated with novel complex thermal barrier coating (TBC) system. The TBC system comprises a metallic CoNiCrAlY bond coat (BC) and a complex ceramic top coat (TC). The TC is a mixture of conventional YSZ ceramic and a eutectic nanocrystalline ceramic Eucor in the ratio of 50/50 in wt%. Eucor is made of zirconia (ZrO2), alumina (Al2O3) and silica (SiO2). Low cycle fatigue tests were performed in symmetrical push-pull cycle under strain control at 900 °C. Cyclic hardening/softening curves, cyclic stress-strain curves and fatigue life curves of coated and uncoated material were obtained. Fracture surfaces and polished sections parallel to the loading axis of specimens in as-coated conditions and after cyclic loading were observed by means of scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) to study degradation mechanisms during high-temperature low cycle fatigue. TBC delamination was observed at the TC/BC interface and rafting of precipitates occurred after high-temperature exposure. The microstructural investigations help discuss the differences in the stress-strain response and fatigue life of coated and uncoated superalloy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kianicová M, Kafrík J, Trník J (2016) Degradation of Aluminide Coatings Deposited on Nickel Superalloys. Procedia Eng 136:346–352. doi:https://doi.org/10.1016/j.proeng.2016.01.221

  2. Obrtlík K, Pospíšilová S, Juliš M, et al (2011) Low cycle fatigue behavior of cast superalloy Inconel 713LC with Al coating at 800 °C. Key Eng Mater 452–453:265–268. doi:www.scientific.net/KEM.452-453.265

  3. Juliš M, Obrtlík K, Pospíšilová S, et al (2012) Influence of Al-Si diffusion coating on low cycle fatigue properties of cast superalloy Inconel 738LC at 800 °C. Key Eng Mater 488–489:307–310. doi:www.scientific.net/KEM.488-489.307

  4. Obrtlík K, Pospíšilová S, Juliš M, et al (2012) Fatigue behavior of coated and uncoated cast Inconel 713LC at 800 °C. Int J Fatigue 41:101–106. doi:j.ijfatigue.2011.12.010

    Google Scholar 

  5. Slámečka K, Pokluda J, Kianicová M, et al (2013) Fatigue life of cast Inconel 713LC with/without protective diffusion coating under bending, torsion and their combination. Eng Fract Mech 110:459–467. doi:10.1016/j.engfracmech.2013.01.001

    Google Scholar 

  6. Padture NP, Gell M, Jordan EH (2002) Thermal Barrier Coatings for Gas-Turbine Engine Applications. Science 296:280. doi:https://doi.org/10.1126/science.1068609

  7. Padture NP (2016) Advanced structural ceramics in aerospace propulsion. Nat Mater 15:804–809. doi:https://doi.org/10.1038/nmat4687

  8. Ghasemi R, Vakilifard H (2017) Plasma-sprayed nanostructured YSZ thermal barrier coatings: Thermal insulation capability and adhesion strength. Ceram Int 43:8556–8563. doi:https://doi.org/10.1016/j.ceramint.2017.03.074

  9. Liu JH, Liu YB, He X, Liu L (2016) Study on TBCs insulation characteristics of a turbine blade under serving conditions. Case Stud Therm Eng 8:250–259. doi:https://doi.org/10.1016/j.csite.2016.08.004

  10. Bose S (2007) Chapter 7—Thermal Barrier Coatings (TBCs). In: High Temp. Coat. Butterworth-Heinemann, Burlington, pp 155–232

    Google Scholar 

  11. Ray AK, Dwarakadasa ES, Das DK, et al (2007) Fatigue behavior of a thermal barrier coated superalloy at 800 °C. Mater Sci Eng A 448:294–298. doi:https://doi.org/10.1016/j.msea.2006.10.035

  12. Obrtlík K, Hutařová S, Čelko L, et al (2014) Effect of thermal barrier coating on low cycle fatigue behavior of cast Inconel 713LC at 900 °c. Adv Mater Res 891–892:848–853. doi:www.scientific.net/AMR.891-892.848

  13. Chen ZB, Wang ZG, Zhu SJ (2011) Thermomechanical fatigue behavior of an air plasma sprayed thermal barrier coating system. Mater Sci Eng A 528:8396–8401. doi:https://doi.org/10.1016/j.msea.2011.08.031

  14. Kuba S, Kojima Y, Suzuki H (2006) Effect of Thermal Barrier Coating Layer on HIP Treated IN738LC Fatigue Characteristic. Key Eng Mater 306–308:109–114. doi:www.scientific.net/KEM.306-308.109

  15. Su H, Zhang J, Yu J, et al (2011) Rapid solidification and fracture behavior of ternary metastable eutectic Al2O3/YAG/YSZ in situ composite ceramic. Mater Sci Eng A 528:1967–1973. doi:https://doi.org/10.1016/j.msea.2010.11.046

  16. Chráska T, Hostomský J, Klementová M, Dubský J (2009) Crystallization kinetics of amorphous alumina–zirconia–silica ceramics. J Eur Ceram Soc 29:3159–3165. doi:https://doi.org/10.1016/j.jeurceramsoc.2009.05.020

  17. Obrtlík K, Čelko L, Chráska T, et al Effect of alumina-silica-zirconia eutectic ceramic thermal barrier coating on the low cycle fatigue behaviour of cast polycrystalline nickel-based superalloy at 900 °C. Surf Coat Technol. doi:https://doi.org/10.1016/j.surfcoat.2017.03.003

  18. Ekström M, Thibblin A, Tjernberg A, et al (2015) Evaluation of internal thermal barrier coatings for exhaust manifolds. Surf Coat Technol 272:198–212. doi:https://doi.org/10.1016/j.surfcoat.2015.04.005

  19. Petrenec M, Obrtlík K, Polák J (2005) Inhomogeneous dislocation structure in fatigued INCONEL 713 LC superalloy at room and elevated temperatures. Mater Sci Eng A 400–401:485–488. doi:https://doi.org/10.1016/j.msea.2005.01.058

  20. Šulák I, Obrtlík K, Čelko L (2016) High Temperature Low Cycle Fatigue Characteristics of Grit Blasted Polycrystalline Ni-Base Superalloy. Key Eng Mater 665:73–76. doi:www.scientific.net/KEM.665.73

  21. Šulák I, Obrtlík K, Čelko L (2016) Comparative Study of Microstructure and High Temperature Low Cycle Fatigue Behaviour of Nickel Base Superalloys Inconel 713LC and MAR-M247. Key Eng Mater 713:86–89. doi:www.scientific.net/KEM.713.86

  22. Kunz L, Lukáš P, Konečná R (2010) High-cycle fatigue of Ni-base superalloy Inconel 713LC. Int J Fatigue 32:908–913. https://doi.org/10.1016/j.ijfatigue.2009.02.042

  23. Horník V, Šmíd M, Hutař P, et al (2017) Interaction of Creep and High Cycle Fatigue of IN 713LC Superalloy. Solid State Phenom 258:595–598. doi:www.scientific.net/SSP.258.595

  24. Slámečka K, Čelko L, Skalka P, et al (2015) Bending fatigue failure of atmospheric-plasma-sprayed CoNiCrAlY + YSZ thermal barrier coatings. Int J Fatigue 70:186–195. doi:https://doi.org/10.1016/j.ijfatigue.2014.09.009

  25. Hernandez MT, Karlsson AM, Bartsch M (2009) On TGO creep and the initiation of a class of fatigue cracks in thermal barrier coatings. Surf Coat Technol 203:3549–3558. doi:https://doi.org/10.1016/j.surfcoat.2009.05.018

  26. Hutařová S, Obrtlík K, Juliš M, et al (2014) Degradation of TBC coating during low-cycle fatigue tests at high temperature. Key Eng Mater 592–593:461–464. doi:www.scientific.net/KEM.592-593.461

  27. Šulák I, Obrtlík K, Čelko L, Gejdoš P (2017) Degradation of YSZ/EUCOR TBC Coating System during High Temperature Low Cycle Fatigue Tests. Solid State Phenom 258:420–423. doi:www.scientific.net/SSP.258.420

Download references

Acknowledgements

The present research was financially supported by the grant No. 15-20991S of the Czech Science Foundation (GACR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Šulák .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Šulák, I., Obrtlík, K., Čelko, L., Jech, D., Gejdoš, P. (2018). High-Temperature Low Cycle Fatigue Resistance of Inconel 713LC Coated with Novel Thermal Barrier Coating. In: Ambriz, R., Jaramillo, D., Plascencia, G., Nait Abdelaziz, M. (eds) Proceedings of the 17th International Conference on New Trends in Fatigue and Fracture. NT2F 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-70365-7_6

Download citation

Publish with us

Policies and ethics