Skip to main content

A New High-Cycle Fatigue Criterion Based on a Self-consistent Scheme for Hard Metals Under Non-proportional Loading

  • Conference paper
  • First Online:

Abstract

Elastic anisotropy has a great influence on high-cycle fatigue but is rarely taken into account in the micro-macro fatigue criteria. The aim of this paper is to overcome this deficiency by developing a new fatigue limit criterion suitable for non-proportional loads and taking into account anisotropic cubic crystals. Attention is focused upon the Papadopoulos’s integral criterion. This criterion supposes that the elastic properties of the representative elementary volume of the material and its constituent grains were the same. In general, this assumption is not hold true. To describe the meso-macro transition, the author uses the Lin-Taylor scheme. In this work we propose the extension of this integral criterion, using the self-consistent scheme of Bui. This makes it possible to take into account the cubic anisotropy of the ferrite inclusions. The application of the new criterion on 42CrMo4, 34Cr4, CK45 and 25CrMo4 steels gives very satisfactory results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gough, H. J., Pollard, H. V. (1935). The Strength of Metals under combined Alternating Stresses. P. I. Mech. Eng., vol. 131, 3–103.

    Google Scholar 

  2. Stulen, F. B., Cummings, H. N. (1954). A failure Criterion for Multiaxial Fatigue Stresses. Proc. Am. Soc. Test. Mater., vol. 54, 822–835.

    Google Scholar 

  3. Crossland, B. (1956). Effect of Large Hydrostatic Pressures on the Torsional Fatigue Strength of an Alloy Steel. Proceedings of the International Conference on Fatigue of Metals, Institution of Mechanical Engineers, 138–149.

    Google Scholar 

  4. Sines, G. (1959). Behavior of Metals under Complex Static and Alternating Stresses. In Metal Fatigue, Sines G. and Waisman J.L. Editors, McGraw Hill, 145–169.

    Google Scholar 

  5. Dang Van, K. (1973). Sur la résistance à la fatigue des métaux. Thèse de Doctorat ès Sciences. Science et Techniques de l’Armement, vol. 47, 647–722.

    Google Scholar 

  6. Papuga, J., Růžička, M. (2008). Two new multiaxial criteria for high cycle fatigue computation. Int. J. Fatigue, vol. 30, pp. 58–66.

    Google Scholar 

  7. Liu, J., Zenner, H. (2003). Fatigue limit of ductile metals under multiaxial loading. In Carpinteri A, de Freitas M, Spagnoli A, editors. Biaxial/multiaxial fatigue and fracture, ESIS 31. Amsterdam: Elsevier, 63–147.

    Google Scholar 

  8. Papadopoulos, I. V. (1994). A new criterion of fatigue strength for out-of-phase bending and torsion of hard metals. Int. J. Fatigue, vol. 16, pp. 377–384.

    Google Scholar 

  9. Papadopoulos, I. V. (1995). A high-cycle fatigue criterion applied in biaxial and triaxial out- of-phase stress conditions. FFEMS, vol. 18, pp. 79–91.

    Google Scholar 

  10. Robert, C., Saintier, N., Palin-Luc, T., Morel, F. (2012). Micro-mechanical modelling of high cycle fatigue behaviour of metals under multiaxial loads. Mechanics of Materials, vol. 55, 112–129.

    Google Scholar 

  11. Dang Van, K., Papadopoulos, I. V. (1999). High-Cycle Metal Fatigue: from theory to appli cations. Springer-Verlag Wien GmbH, n 392, pp. 89–143.

    Google Scholar 

  12. Bui, H. D. (2006). Fracture Mechanics: Inverse Problems and Solutions. Solid mechanics & its applications, Springer, vol. 139.

    Google Scholar 

  13. Zenner, H. and Heidenreich, R. and Richter, I. Z. (1985). Dauerschwingfestigkeit bei nicht- synchroner mehrachsinger beanspruchung. Werkstofftech, vol. 16, 101–112.

    Google Scholar 

  14. Mielke, S. (1980). Festigkeitsverhalten metallischer Werkstoffe unter zweiachsiger schwin- gender Beanspruchung mit verschiedenen Spannungszeitverläufen. Disse., TH Aachen, Germany.

    Google Scholar 

  15. Simbürger, A. (1975). Festigkeitsverhalten zäher Werkstoffe bei einer mehrachsigen, phasen- verschobenen Schwingbeanspruchung mit körperfesten und veränderlichen Hauptspan- nungsrichtungen. LBF, Bericht Nr. FB-121, Darmstad, Germany.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Ioannis Papadopoulos for very valuable advice on his fatigue integral criterion, Jan Papuga for fruitful discussion of the effect of normal stress. This work is part of the certification in virtual railway (CERVIFER) project and was supported by ADEME though the program “Véhicule du futur des investissements d’avenir”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kékéli Amouzou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amouzou, K., Charkaluk, E. (2018). A New High-Cycle Fatigue Criterion Based on a Self-consistent Scheme for Hard Metals Under Non-proportional Loading. In: Ambriz, R., Jaramillo, D., Plascencia, G., Nait Abdelaziz, M. (eds) Proceedings of the 17th International Conference on New Trends in Fatigue and Fracture. NT2F 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-70365-7_4

Download citation

Publish with us

Policies and ethics