Skip to main content

InSAR Coherence-Dependent Fuzzy C-Means Flood Mapping Using Particle Swarm Optimization

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10617))

  • 2755 Accesses

Abstract

Owing to the day and night imaging capability and the weather-independent acquisition of the Synthetic Aperture Radar systems, an environmental monitoring is now definitely possible. This study introduces a fully automated flood mapping approach using the combination of SAR and Interferometric SAR information. In order to achieve an accurate delineation of the flooding extents, we are proposing an enhancement of the Fuzzy C-Means approach based on Particle Swarm Optimization. Indeed, the FCM membership update of this proposed clustering approach takes the advantages of the InSAR coherence spatial context information and the global optimization model of the PSO algorithm. The clustering results are presented using Envisat SAR data that were acquired before and after the flooding event of the Tunisian Mellegue river. To evaluate the separation and homogeneity performances of the proposed clustering approach, we are analyzing three fuzzy internal validity measures that involve the membership and dataset values information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alsdorf, D.E., Melack, J.M., Dunne, T., Mertes, L.A., Hess, L.L., Smith, L.C.: Interferometric radar measurements of water level changes on the amazon flood plain. Nature 404(6774), 174–177 (2000)

    Article  Google Scholar 

  2. Bamler, R., Hartl, P.: Synthetic aperture radar interferometry. Inverse Probl. 14(4), R1 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Springer, Boston (1981). https://doi.org/10.1007/978-1-4757-0450-1

    Book  MATH  Google Scholar 

  4. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984)

    Article  Google Scholar 

  5. Cai, W., Chen, S., Zhang, D.: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognit. 40(3), 825–838 (2007)

    Article  MATH  Google Scholar 

  6. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat.-Theory Methods 3(1), 1–27 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chaabani, C., Abdelfattah, R.: Optimized fuzzy algorithm based on modified similarity measure for mapping flood impacts. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 2380–2383, July 2016

    Google Scholar 

  8. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 2, 224–227 (1979)

    Article  Google Scholar 

  9. Deer, P.: Digital change detection techniques in remote sensing. Technical report (1995)

    Google Scholar 

  10. Dunn, J.C.: A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters (1973)

    Google Scholar 

  11. Dunn, J.C.: Well-separated clusters and optimal fuzzy partitions. J. Cybern. 4(1), 95–104 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, MHS 1995, pp. 39–43. IEEE (1995)

    Google Scholar 

  13. Centre for Research on the Epidemiology of Disasters (CRED) and United Nations office for Disaster Risk Reduction (UNISDR). The human cost of weather related disasters: 1995–2015. Technical report (2015)

    Google Scholar 

  14. Ghaffarian, S., Ghaffarian, S.: Automatic histogram-based fuzzy c-means clustering for remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 97, 46–57 (2014)

    Article  Google Scholar 

  15. González, P.J., Fernández, J.: Drought-driven transient aquifer compaction imaged using multitemporal satellite radar interferometry. Geology 39(6), 551–554 (2011)

    Article  Google Scholar 

  16. Graham, L.C.: Synthetic interferometer radar for topographic mapping. Proc. IEEE 62(6), 763–768 (1974)

    Article  Google Scholar 

  17. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: Clustering validity checking methods: part II. SIGMOD Rec. 31(3), 19–27 (2002)

    Article  MATH  Google Scholar 

  18. Hooper, A., Bekaert, D., Spaans, K., Arıkan, M.: Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 514, 1–13 (2012)

    Article  Google Scholar 

  19. Lillesand, T., Kiefer, R.W., Chipman, J.: Remote sensing and image interpretation. Wiley, Hoboken (2014)

    Google Scholar 

  20. Liu, Y., Li, Z., Xiong, H., Gao, X., Wu, J.: Understanding of internal clustering validation measures. In: 2010 IEEE 10th International Conference on Data Mining (ICDM), pp. 911–916. IEEE (2010)

    Google Scholar 

  21. Lu, D., Mausel, P., Brondizio, E., Moran, E.: Change detection techniques. Int. J. Remote Sens. 25(12), 2365–2401 (2004)

    Article  Google Scholar 

  22. Field, C.M.T., Midgley, P.: Glossary of terms: managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change. A special report of working groups I and II of the intergovernmental panel on climate change. Technical report (2012)

    Google Scholar 

  23. Ma, W., Jiao, L., Gong, M., Li, C.: Image change detection based on an improved rough fuzzy c-means clustering algorithm. Int. J. Mach. Learn. Cybern. 5(3), 369–377 (2014)

    Article  Google Scholar 

  24. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  25. Pal, N.R., Bezdek, J.C.: On cluster validity for the fuzzy c-means model. IEEE Trans. Fuzzy Syst. 3(3), 370–379 (1995)

    Article  Google Scholar 

  26. Rodriguez, E., Martin, J.: Theory and design of interferometric synthetic aperture radars. In: IEE Proceedings F-Radar and Signal Processing, vol. 139, pp. 147–159. IET (1992)

    Google Scholar 

  27. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  MATH  Google Scholar 

  28. Selmi, S., Abdallah, W.B., Abdelfattah, R.: Flood mapping using insar coherence map. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 40(7), 161 (2014)

    Article  Google Scholar 

  29. Shang, R., Tian, P., Jiao, L., Stolkin, R., Feng, J., Hou, B., Zhang, X.: A spatial fuzzy clustering algorithm with kernel metric based on immune clone for SAR image segmentation. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 9(4), 1640–1652 (2016)

    Article  Google Scholar 

  30. Villmann, T., Geweniger, T., Kästner, M., Lange, M.: Fuzzy neural gas for unsupervised vector quantization. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS, vol. 7267, pp. 350–358. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29347-4_41

    Chapter  Google Scholar 

  31. Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 13(8), 841–847 (1991)

    Article  Google Scholar 

  32. Zebker, H.A., Goldstein, R.M.: Topographic mapping from interferometric synthetic aperture radar observations. J. Geophys. Res.: Solid Earth 91(B5), 4993–4999 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chayma Chaabani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chaabani, C., Abdelfattah, R. (2017). InSAR Coherence-Dependent Fuzzy C-Means Flood Mapping Using Particle Swarm Optimization. In: Blanc-Talon, J., Penne, R., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2017. Lecture Notes in Computer Science(), vol 10617. Springer, Cham. https://doi.org/10.1007/978-3-319-70353-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70353-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70352-7

  • Online ISBN: 978-3-319-70353-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics