Skip to main content

Image Classification for Ground Traversability Estimation in Robotics

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10617))

Abstract

Mobile ground robots operating on uneven terrain must predict which areas of the environment they are able to pass in order to plan feasible paths. We cast traversability estimation as an image classification problem: we build a convolutional neural network that, given a square \(60 \times 60\) px image representing the heightmap of a small \(1.2 \times 1.2\) m patch of terrain, predicts whether the robot will be able to traverse such patch from bottom to top. The classifier is trained for a specific robot model, which may implement any locomotion type (wheeled, tracked, legged, snake-like), using simulation data on a variety of training terrains; once trained, the classifier can be quickly applied to patches extracted from unseen large heightmaps, in multiple orientations, thus building oriented traversability maps. We quantitatively validate the approach on real-elevation datasets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    data and code to reproduce our results are available online: https://github.com/romarcg/traversability_estimation.

References

  1. Hadsell, R., Scoffier, M., Muller, U., LeCun, Y., Sermanet, P.: Mapping and planning under uncertainty in mobile robots with long-range perception. In. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS), pp. 1–6 (2008)

    Google Scholar 

  2. Uğur, E., Şahin, E.: Traversability: a case study for learning and perceiving affordances in robots. Adapt. Behav. 18, 258–284 (2010)

    Article  Google Scholar 

  3. Molino, V., Madhavan, R., Messina, E., Downs, A., Balakirsky, S., Jacoff, A.: Traversability metrics for rough terrain applied to repeatable test methods. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1787–1794, October 2007

    Google Scholar 

  4. Brooks, C.A., Iagnemma, K.D.: Self-supervised classification for planetary rover terrain sensing. In: 2007 IEEE Aerospace Conference. pp. 1–9 March 2007

    Google Scholar 

  5. Bekhti, M.A., Kobayashi, Y., Matsumura, K.: Terrain traversability analysis using multi-sensor data correlation by a mobile robot. In: 2014 IEEE/SICE International Symposium on System Integration. pp. 615–620, December 2014

    Google Scholar 

  6. Silver, D., Bagnell, J.A., Stentz, A.: Learning from demonstration for autonomous navigation in complex unstructured terrain. Int. J. Rob. Res. 29(12), 1565–1592 (2010)

    Article  Google Scholar 

  7. Chilian, A., Hirschmuller, H.: Stereo camera based navigation of mobile robots on rough terrain, pp. 4571–4576 (2009)

    Google Scholar 

  8. Cunningham, C., Wong, U., Peterson, K.M., Whittaker, W.L.R.: Predicting terrain traversability from thermal diffusivity. In: Mejias, L., Corke, P., Roberts, J. (eds.) Field and Service Robotics. STAR, vol. 105, pp. 61–74. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-07488-7_5

    Google Scholar 

  9. Herbert, M., Caillas, C., Krotkov, E., Kweon, I.S., Kanade, T.: Terrain mapping for a roving planetary explorer. In: Proceedings of 1989 International Conference on Robotics and Automation, vol. 2, pp. 997–1002, May 1989

    Google Scholar 

  10. Balta, H., Cubber, G.D., Doroftei, D., Baudoin, Y., Sahli, H.: Terrain traversability analysis for off-road robots using time-of-flight 3D sensing. In: Proceedings of the International Workshop on Robotics for Risky Environment - Extreme Robotics (2013)

    Google Scholar 

  11. Lacroix, S., Mallet, A., Bonnafous, D., Bauzil, G., Fleury, S., Herrb, M., Chatila, R.: Autonomous rover navigation on unknown terrains functions and integration. In: Rus, D., Singh, S. (eds.) ISER 2000, vol. 271, pp. 501–510. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45118-8_50

    Google Scholar 

  12. Schwarz, M., Behnke, S.: Local navigation in rough terrain using omnidirectional height. In: ISR/Robotik 2014, 41st International Symposium on Robotics, pp. 1–6, June 2014

    Google Scholar 

  13. Hudjakov, R., Tamre, M.: Aerial imagery terrain classification for long-range autonomous navigation. In: 2009 International Symposium on Optomechatronic Technologies, pp. 88–91, September 2009

    Google Scholar 

  14. Längkvist, M., Kiselev, A., Alirezaie, M., Loutfi, A.: Classification and Segmentation of Satellite Orthoimagery Using Convolutional Neural Networks. Remote Sens. 8(4), 329 (2016)

    Article  Google Scholar 

  15. Jackel, L.D., Krotkov, E., Perschbacher, M., Pippine, J., Sullivan, C.: The DARPA LAGR program: goals, challenges, methodology, and phase i results. J. Field Robot. 23(11–12), 945–973 (2006)

    Article  Google Scholar 

  16. Shneier, M., Chang, T., Hong, T., Shackleford, W., Bostelman, R., Albus, J.S.: Learning traversability models for autonomous mobile vehicles. Auton. Robots 24(1), 69–86 (2008)

    Article  Google Scholar 

  17. Hadsell, R., Sermanet, P., Ben, J., Erkan, A., Han, J., Muller, U., LeCun, Y.: Online learning for offroad robots: spatial label propagation to learn long-range traversability. In: Proceedings of Robotics: Science and Systems, Atlanta, GA, USA, June 2007

    Google Scholar 

  18. Rohmer, E., Singh, S.P.N., Freese, M.: V-REP: a versatile and scalable robot simulation framework. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1321–1326 November 2013

    Google Scholar 

  19. SenseFly: elevation datasets, (2016). https://www.sensefly.com/drones/example-datasets.html

  20. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, New York (2006)

    MATH  Google Scholar 

  21. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  22. Breiman, L.: Random Forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  23. Chollet, F., et al.: Keras, (2015). https://github.com/fchollet/keras

  24. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems, (2015). Software available from tensorflow.org

Download references

Acknowledgment

This research was supported by the Swiss National Science Foundation through the National Centre of Competence in Research Robotics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Omar Chavez-Garcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chavez-Garcia, R.O., Guzzi, J., Gambardella, L.M., Giusti, A. (2017). Image Classification for Ground Traversability Estimation in Robotics. In: Blanc-Talon, J., Penne, R., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2017. Lecture Notes in Computer Science(), vol 10617. Springer, Cham. https://doi.org/10.1007/978-3-319-70353-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70353-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70352-7

  • Online ISBN: 978-3-319-70353-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics