Skip to main content

Robust Tracking in Weakly Dynamic Scenes

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10617))

  • 2759 Accesses

Abstract

Estimating the inter-frame motion of a free-moving camera is important for the reconstruction of large 3-D scene from one or more sequences of frames. This work focuses on scenes with a mixture of dynamic and static elements and proposes an approach to improve tracking in existing 3-D reconstruction algorithms, as well as provide a basis for new types of 3-D reconstructions that are able to construct scenes of moving objects. The main strategy adopted in this work is to group feature points within fixed block-size within the image then to prune groups whose motion deviates from the dominant motions established through majority voting. Our experiments show that the proposed approach performs well in several outdoor dynamic scenes, significantly outperforming typical feature-based and direct pose estimation techniques in footage with moving elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  2. Sünderhauf, N., Protzel, P.: Stereo odometrya review of approaches. Chemnitz University of Technology Technical Report (2007)

    Google Scholar 

  3. Kerl, C., Sturm, J., Cremers, D.: Robust odometry estimation for RGB-D cameras. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 3748–3754. IEEE (2013)

    Google Scholar 

  4. Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: Fast semi-direct monocular visual odometry. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 15–22. IEEE (2014)

    Google Scholar 

  5. Howard, A.: Real-time stereo visual odometry for autonomous ground vehicles. In: IROS 2008. IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3946–3952. IEEE, 2008

    Google Scholar 

  6. Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J., Kohi, P., Shotton, J., Hodges, S., Fitzgibbon, A.: Kinectfusion: real-time dense surface mapping and tracking. In: 2011 10th IEEE International Symposium on Mixed and augmented reality (ISMAR), pp. 127–136. IEEE (2011)

    Google Scholar 

  7. Kaess, M., Ni, K., Dellaert, F.: Flow separation for fast and robust stereo odometry. In: ICRA 2009. IEEE International Conference on Robotics and Automation, pp. 3539–3544. IEEE (2009)

    Google Scholar 

  8. Artieda, J., Sebastian, J.M., Campoy, P., Correa, J.F., Mondragón, I.F., Martínez, C., Olivares, M.: Visual 3-d SLAM from UAVs. J. Intell. Robot. Syst. 55(4), 299–321 (2009)

    Article  MATH  Google Scholar 

  9. Kitt, B., Geiger, A., Lategahn, H.: Visual odometry based on stereo image sequences with RANSAC-based outlier rejection scheme. In: Intelligent Vehicles Symposium (IV), 2010 IEEE, pp. 486–492. IEEE (2010)

    Google Scholar 

  10. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: dense tracking and mapping in real-time. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2320–2327. IEEE (2011)

    Google Scholar 

  11. Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: Efficient perspective-n-point camera pose estimation

    Google Scholar 

  12. Engel, J., Sturm, J., Cremers, D.: Semi-dense visual odometry for a monocular camera. In: Proceedings of the IEEE International Conference On Computer Vision, pp. 1449–1456 (2013)

    Google Scholar 

  13. Konolige, K., Agrawal, M., Sola, J.: Large-scale visual odometry for rough terrain. In: Kaneko, M., Nakamura, Y. (eds.) Robotics Research, pp. 201–212. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14743-2_18

    Chapter  Google Scholar 

  14. Dollár, P., Appel, R., Belongie, S., Perona, P.: Fast feature pyramids for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1532–1545 (2014)

    Article  Google Scholar 

  15. Bouguet, J.-Y.: Pyramidal implementation of the affine lucas kanade feature tracker description of the algorithm. Intel Corporation 5(1–10), 4 (2001)

    Google Scholar 

  16. Zhang, Z.: Determining the epipolar geometry and its uncertainty: a review. Int. J. Comput. Vis. 27(2), 161–195 (1998)

    Article  Google Scholar 

  17. Gee, T., Delmas, P., Stones-Havas, N., Sinclair, C., Van Der Mark, W., Li, W., Friedrich, H., Gimel’farb, G,: Tsai camera calibration enhanced. In: 2015 14th IAPR International Conference on Machine Vision Applications (MVA), pp. 435–438. IEEE (2015)

    Google Scholar 

  18. Fusiello, A., Trucco, E., Verri, A.: A compact algorithm for rectification of stereo pairs. Mach. Vis. Appl. 12(1), 16–22 (2000)

    Article  Google Scholar 

  19. Zhang, K., Lu, J., Lafruit, G.: Cross-based local stereo matching using orthogonal integral images. IEEE Trans. Circuits Syst. Video Technol. 19(7), 1073–1079 (2009)

    Article  Google Scholar 

  20. Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. J. Roy. Stat. Soc.: Ser. C (Appl. Stat.) 28(1), 100–108 (1979)

    MATH  Google Scholar 

  21. Arun, S.K., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-d point sets. IEEE Trans. Pattern Anal. Mach. Intell. 5, 698–700 (1987)

    Article  Google Scholar 

  22. Moré, J.J.: The levenberg-marquardt algorithm: implementation and theory. In: Watson, G.A. (ed.) Numerical Analysis. LNM, vol. 630, pp. 105–116. Springer, Heidelberg (1978). https://doi.org/10.1007/BFb0067700

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor Gee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gee, T., Gong, R., Delmas, P., Gimel’farb, G. (2017). Robust Tracking in Weakly Dynamic Scenes. In: Blanc-Talon, J., Penne, R., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2017. Lecture Notes in Computer Science(), vol 10617. Springer, Cham. https://doi.org/10.1007/978-3-319-70353-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70353-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70352-7

  • Online ISBN: 978-3-319-70353-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics