Skip to main content

Prostate Size Inference from Abdominal Ultrasound Images with Patch Based Prior Information

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10617))

  • 2730 Accesses

Abstract

Prostate size inference from abdominal ultrasound images is crucial for many medical applications but it remains a challenging task due to very weak prostate borders and high image noise. This paper presents a novel method that enforces image patch prior information on multi-task deep learning followed by a global prostate shape estimation. The patch prior information is learned by multi-task Deep Convolutional Neural Networks (DCNNs) trained on multi-scale image patches to capture both local and global image information. We produce tens of thousands of image patches for the DCNN training that needs a large amount of training data which usually is not available for medical images. The three learned tasks for the DCNN are the distance between the patch center and the nearest contour point, the angle of the line segment between the patch center and the prostate center, and the contour curvature value for the patch center. During the prostate shape inference time, the labels returned from the multi-task DCNN are used in a global shape fitting process to obtain the final prostate contours which are then used for size inference. We performed experiments on transverse abdominal ultrasound images which are very challenging for automatic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://vision.gyte.edu.tr/pages/projects.html.

References

  1. Astudillo, R.F., Amir, S., Ling, W., Silva, M., Trancoso, I.: Learning word representations from scarce and noisy data with embedding subspaces. In: ACL, vol. 1, pp. 1074–1084 (2015)

    Google Scholar 

  2. Betrouni, N., Vermandel, M., Pasquier, D., Maouche, S., Rousseau, J.: Segmentation of abdominal ultrasound images of the prostate using a priori information and an adapted noise filter. Comput. Med. Imaging Graph. 29(1), 43–51 (2005)

    Article  Google Scholar 

  3. Carneiro, G., Nascimento, J.C., Freitas, A.: The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods. IEEE Trans. Image Process. 21(3), 968–982 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Choi, Y.J., Kim, J.K., Kim, H.J., Cho, K.S.: Interobserver variability of transrectal ultrasound for prostate volume measurement according to volume and observer experience. Am. J. Roentgenol. 192(2), 444–449 (2009)

    Article  Google Scholar 

  5. De Sio, M., Darmiento, M., Di Lorenzo, G., Damiano, R., Perdonà, S., De Placido, S., Autorino, R.: The need to reduce patient discomfort during transrectal ultrasonography-guided prostate biopsy: what do we know? BJU Int. 96(7), 977–983 (2005)

    Article  Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition 2009, CVPR 2009, pp. 248–255. IEEE (2009)

    Google Scholar 

  7. Ghanei, A., Soltanian-Zadeh, H., Ratkewicz, A., Yin, F.F.: A three-dimensional deformable model for segmentation of human prostate from ultrasound images. Med. Phys. 28(10), 2147–2153 (2001)

    Article  Google Scholar 

  8. Ghose, S., Oliver, A., Martí, R., Lladó, X., Vilanova, J.C., Freixenet, J., Mitra, J., Sidibé, D., Meriaudeau, F.: A survey of prostate segmentation methodologies in ultrasound, magnetic resonance and computed tomography images. Comput. Methods Programs Biomed. 108(1), 262–287 (2012)

    Article  Google Scholar 

  9. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678. ACM (2014)

    Google Scholar 

  10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  11. Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 609–616. ACM (2009)

    Google Scholar 

  12. Liao, S., Gao, Y., Oto, A., Shen, D.: Representation learning: a unified deep learning framework for automatic prostate MR segmentation. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 254–261. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_32

    Chapter  Google Scholar 

  13. Xu, Y., Mo, T., Feng, Q., Zhong, P., Lai, M., Eric, I., Chang, C.: Deep learning of feature representation with multiple instance learning for medical image analysis. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1626–1630. IEEE (2014)

    Google Scholar 

  14. Yuan, J., Qiu, W., Ukwatta, E., Rajchl, M., Tai, X.C., Fenster, A.: Efficient 3D endfiring trus prostate segmentation with globally optimized rotational symmetry. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2211–2218 (2013)

    Google Scholar 

  15. Zhang, Y., Matuszewski, B.J., Histace, A., Precioso, F., Kilgallon, J., Moore, C.: Boundary delineation in prostate imaging using active contour segmentation method with interactively defined object regions. In: Madabhushi, A., Dowling, J., Yan, P., Fenster, A., Abolmaesumi, P., Hata, N. (eds.) Prostate Cancer Imaging 2010. LNCS, vol. 6367, pp. 131–142. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15989-3_15

    Chapter  Google Scholar 

Download references

Acknowledgements

This study is supported by TUBITAK project 114E536.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Sinan Akgul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Albayrak, N.B., Yildirim, E., Akgul, Y.S. (2017). Prostate Size Inference from Abdominal Ultrasound Images with Patch Based Prior Information. In: Blanc-Talon, J., Penne, R., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2017. Lecture Notes in Computer Science(), vol 10617. Springer, Cham. https://doi.org/10.1007/978-3-319-70353-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70353-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70352-7

  • Online ISBN: 978-3-319-70353-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics