Skip to main content

Abstract

A short-term load forecast is the prediction of the consumption of resources in a distribution network in the near future. The supplied resource can be of any kind, such as electricity in power grids or telephone service in telecommunication networks. An accurate forecast of the demand is of utmost importance for the planning of facilities, optimization of day-to-day operations, and an effective management of the available resources. In the context of energy and telecommunication networks, the load data are usually represented as real-valued time series characterized by strong temporal dependencies and seasonal patterns. We begin by reviewing several methods that have been adopted in the past years for the task of short-term load forecast and we highlight their main advantages and limitations. We then introduce the framework of recurrent neural networks, a particular class of artificial neural networks specialized in the processing of sequential/temporal data. We explain how recurrent neural networks can be an effective tool for prediction, especially in those cases where the extent of the time dependencies is unknown a-priori.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bianchi FM, De Santis E, Rizzi A, Sadeghian A (2015a) Short-term electric load forecasting using echo state networks and PCA decomposition. IEEE Access 3:1931–1943. https://doi.org/10.1109/ACCESS.2015.2485943

  • Bianchi FM, Kampffmeyer M, Maiorino E, Jenssen R (2017) Temporal overdrive recurrent neural network. arXiv preprint arXiv:170105159

  • Bianchi FM, Scardapane S, Uncini A, Rizzi A, Sadeghian A (2015b) Prediction of telephone calls load using echo state network with exogenous variables. Neural Netw 71:204–213. https://doi.org/10.1016/j.neunet.2015.08.010

  • Box GE, Cox DR (1964) An analysis of transformations. J R Stat Soc Ser B Methodol 211–252

    Google Scholar 

  • Box GE, Jenkins GM, Reinsel GC (2011) Time series analysis: forecasting and control, vol 734. Wiley

    Google Scholar 

  • Bunn DW (2000) Forecasting loads and prices in competitive power markets. Proc IEEE 88(2)

    Google Scholar 

  • Claveria O, Monte E, Torra S (2015) Tourism demand forecasting with neural network models: different ways of treating information. Int J Tour Res 17(5):492–500. https://doi.org/10.1002/jtr.2016,jTR-13-0416.R2

  • Claveria O, Torra S (2014) Forecasting tourism demand to catalonia: Neural networks vs. time series models. Econo Modell 36:220–228. https://doi.org/10.1016/j.econmod.2013.09.024

  • Dang-Ha TH, Bianchi FM, Olsson R (2017) Local short term electricity load forecasting: automatic approaches. arXiv:1702:08025

  • Daz-Robles LA, Ortega JC, Fu JS, Reed GD, Chow JC, Watson JG, Moncada-Herrera JA (2008) A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: The case of temuco, chile. Atmos Environ 42(35):8331–8340. https://doi.org/10.1016/j.atmosenv.2008.07.020

  • Deihimi A, Showkati H (2012) Application of echo state networks in short-term electric load forecasting. Energy 39(1):327–340

    Article  Google Scholar 

  • Deihimi A, Orang O, Showkati H (2013) Short-term electric load and temperature forecasting using wavelet echo state networks with neural reconstruction. Energy 57:382–401

    Google Scholar 

  • Flunkert V, Salinas D, Gasthaus J (2017) DeepAR: probabilistic forecasting with autoregressive recurrent networks. arXiv:1704:04110

  • Gers FA, Eck D, Schmidhuber J (2001) Applying lstm to time series predictable through time-window approaches. In: Dorffner G, Bischof H, Hornik K (eds) Artificial Neural Networks—ICANN 2001: 2001 Proceedings International Conference Vienna, Austria, August 21–25. Springer, Berlin, Heidelberg, pp 669–676. https://doi.org/10.1007/3-540-44668-0_93

  • Gooijer JGD, Hyndman RJ (2006) 25 years of time series forecasting. Int J Forecast 22(3):443–473. https://doi.org/10.1016/j.ijforecast.2006.01.001 (twenty five years of forecasting)

  • Graves A (2011) Practical variational inference for neural networks. In: Advances in neural information processing systems, pp 2348–2356

    Google Scholar 

  • Graves A (2012) Sequence transduction with recurrent neural networks. arXiv preprint arXiv:12113711

  • Graves A (2013) Generating sequences with recurrent neural networks, pp 1–43. arXiv preprint arXiv:13080850, arXiv:1308.0850v5

  • Graves A, Liwicki M, Bunke H, Schmidhuber J, Fernández S (2008) Unconstrained on-line handwriting recognition with recurrent neural networks. In: Advances in Neural Information Processing Systems, pp 577–584

    Google Scholar 

  • Graves A, Schmidhuber J (2009) Offline handwriting recognition with multidimensional recurrent neural networks. In: Advances in neural information processing systems, pp 545–552

    Google Scholar 

  • Graves A, Wayne G, Danihelka I (2014) Neural turing machines. arXiv:1410.5401

  • Greff K, Srivastava RK, Koutník J, Steunebrink BR, Schmidhuber J (2015) LSTM: a search space odyssey. arXiv preprint arXiv:150304069

  • Gregor K, Danihelka I, Graves A, Rezende DJ, Wierstra D (2015) Draw: A recurrent neural network for image generation. arXiv preprint arXiv:150204623

  • Hippert H, Pedreira C, Souza R (2001) Neural networks for short-term load forecasting: a review and evaluation. IEEE Trans Power Syst 16(1):44–55. https://doi.org/10.1109/59.910780

  • Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Article  Google Scholar 

  • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366. https://doi.org/10.1016/0893-6080(89)90020-8

  • Hyndman R, Koehler AB, Ord JK, Snyder RD (2008) Forecasting with exponential smoothing: the state space approach. Springer Science & Business Media

    Google Scholar 

  • Jan van Oldenborgh G, Balmaseda MA, Ferranti L, Stockdale TN, Anderson DL (2005) Did the ECMWF seasonal forecast model outperform statistical ENSO forecast models over the last 15 years? J Clim 18(16):3240–3249

    Google Scholar 

  • Jang JSR (1993) Anfis: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685

    Article  Google Scholar 

  • Kon SC, Turner LW (2005) Neural network forecasting of tourism demand. Tour Econ 11(3):301–328. https://doi.org/10.5367/000000005774353006

  • Kourentzes N (2013) Intermittent demand forecasts with neural networks. Int J Prod Econ 143(1):198–206. https://doi.org/10.1016/j.ijpe.2013.01.009

  • Law R (2000) Back-propagation learning in improving the accuracy of neural network-based tourism demand forecasting. Tour Manag 21(4):331–340. https://doi.org/10.1016/S0261-5177(99)00067-9

  • Malhotra P, Vig L, Shroff G, Agarwal P (2015) Long short term memory networks for anomaly detection in time series. In: Proceedings. Presses universitaires de Louvain, p 89

    Google Scholar 

  • Mikolov T (2012) Statistical language models based on neural networks. PhD thesis, Brno University of Technology

    Google Scholar 

  • Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases and their compositionality. In: Advances in neural information processing systems, pp 3111–3119

    Google Scholar 

  • Oord Avd, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, Kavukcuoglu K (2016) Wavenet: A generative model for raw audio. arXiv preprint arXiv:160903499

  • Palmer A, Montao JJ, Ses A (2006) Designing an artificial neural network for forecasting tourism time series. Tour Manag 27(5):781–790. https://doi.org/10.1016/j.tourman.2005.05.006

  • Pascanu R, Mikolov T, Bengio Y (2013b) On the difficulty of training recurrent neural networks. In: Proceedings of the 30th International Conference on International Conference on Machine Learning, JMLR.org, ICML’13, vol 28, pp III–1310–III–1318. http://dl.acm.org/citation.cfm?id=3042817.3043083

  • Peng Y, Lei M, Li JB, Peng XY (2014) A novel hybridization of echo state networks and multiplicative seasonal ARIMA model for mobile communication traffic series forecasting. Neural Comput Appl 24(3–4):883–890

    Google Scholar 

  • Plummer E (2000) Time series forecasting with feed-forward neural networks: guidelines and limitations. Neural Netw 1:1

    Google Scholar 

  • Ruiz PA, Gross G (2008) Short-term resource adequacy in electricity market design. IEEE Trans Power Syst 23(3):916–926

    Article  Google Scholar 

  • Sapankevych NI, Sankar R (2009) Time series prediction using support vector machines: a survey. IEEE Comput Intell Mag 4(2):24–38

    Article  Google Scholar 

  • Schäfer AM, Zimmermann HG (2007) Recurrent neural networks are universal approximators. Int J Neural Syst 17(04):253–263. https://doi.org/10.1142/S0129065707001111

  • Schäfer AM, Zimmermann HG (2007) Recurrent Neural Networks are universal approximators. Int J Neural Syst 17(4):253–263. https://doi.org/10.1142/S0129065707001111

  • Shen H, Huang JZ (2008) Interday forecasting and intraday updating of call center arrivals. Manuf Serv Oper Manag 10(3):391–410

    Article  Google Scholar 

  • Simchi-Levi D, Simchi-Levi E, Kaminsky P (1999) Designing and managing the supply chain: concepts, strategies, and cases. McGraw-Hill, New York

    Google Scholar 

  • Sutskever I, Martens J, Hinton GE (2011) Generating text with recurrent neural networks. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp 1017–1024

    Google Scholar 

  • Takens F (1981) Detecting strange attractors in turbulence. Springer

    Google Scholar 

  • Taylor JW (2008) A comparison of univariate time series methods for forecasting intraday arrivals at a call center. Manag Sci 54(2):253–265

    Article  MATH  Google Scholar 

  • Teixeira JP, Fernandes PO (2012) Tourism time series forecast-different ANN architectures with time index input. Procedia Technol 5:445–454. https://doi.org/10.1016/j.protcy.2012.09.049

  • Tsaur SH, Chiu YC, Huang CH (2002) Determinants of guest loyalty to international tourist hotelsa neural network approach. Tour Manag 23(4):397–405. https://doi.org/10.1016/S0261-5177(01)00097-8

  • Vermaak J, Botha EC (1998) Recurrent neural networks for short-term load forecasting. IEEE Trans Power Syst 13(1):126–132. https://doi.org/10.1109/59.651623

    Article  Google Scholar 

  • Weston J, Chopra S, Bordes A (2014) Memory networks. arXiv:1410.3916

  • Zhang G, Patuwo BE, Hu MY (1998) Forecasting with artificial neural networks:: the state of the art. Int J Forecast 14(1):35–62. https://doi.org/10.1016/S0169-2070(97)00044-7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Maria Bianchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bianchi, F.M., Maiorino, E., Kampffmeyer, M.C., Rizzi, A., Jenssen, R. (2017). Introduction. In: Recurrent Neural Networks for Short-Term Load Forecasting. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-319-70338-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70338-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70337-4

  • Online ISBN: 978-3-319-70338-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics