Skip to main content

Nanoformulations for Cancer Therapy

  • Chapter
  • First Online:
Nanotechnology Applied To Pharmaceutical Technology

Abstract

Recent progress in the field of science and technology has catered us with new dimensions to understand the origin and complexity of biological events associated with the development of cancer. Growth of cancer is a multi-stage process which involves diverse genetic alterations and cellular signalling pathways, responsible for the development and maturation of tumours. Based on the recent advancement, several new strategies in cancer therapy are now available that offers better therapeutic results. However, there are a number of issues still existing which need to be addressed intensely to obtain effective results in cancer therapy thereby decreasing the mortality rate. Moreover, generation of resistant cancer cells after treatment with conventional methods is liable to depict an adverse scenario in cancer therapy, which demands new therapeutic and diagnostic modules in order to combat this fatal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Ag NPs:

Silver nanoparticles

Au NPs:

Gold nanoparticles

Cl :

Chloride ions

Cu NPs:

Copper nanoparticles

CuO:

Copper oxide

DOX:

Doxorubicin

ECM:

Extracellular matrix

EPR:

Enhanced permeation and retention

HCPT:

10-Hydroxycamptothecine

LDH:

Lactate dehydrogenase

MEC:

Minimum effective concentration

MTs:

Metallothioneins

NGS:

Next-generation sequencing

NH2 :

Amine group

NIR:

Near-infrared light

NP:

Nanoparticles

PD:

Paracetamol dimer

PDT:

Photodynamic therapy

PEG:

Polyethylene glycol (PEG)

PS:

Photosensitizers

PSMA:

Prostate-specific membrane antigen

PTN:

Photothermalnanotherapeutics

PTT:

Photothermal therapy

PTX:

Paclitaxel

PVP:

Polyvinylpyrrolidone

QDs:

Quantum dots

RES:

Reticuloendothelial system

RNA:

Ribonucleic acid

ROS:

Reactive oxygen species

SERS:

Surface-enhanced Raman scattering

SPR:

Surface plasmon resonance

TiO2 :

Titanium oxide

WHO:

World Health Organization

ZnO:

Zinc oxide

References

  • Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12:2313–2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • American Cancer Society (2017) https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/photodynamic-therapy.html. Accessed 15 Aug 2017

  • Bañobre-López M, Teijeiro A, Rivas J (2013) Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep Pract Oncol Radiother 18:397–400

    Article  PubMed  PubMed Central  Google Scholar 

  • Biener J, Wittstock A, Baumann TF, Weissmüller J, Bäumer M, Hamza AV (2009) Surface chemistry in nanoscale materials. Materials 2:2404–2428

    Article  CAS  PubMed Central  Google Scholar 

  • Blackadar CB (2016) Historical review of the causes of cancer. World J Clin Oncol 7:54

    Google Scholar 

  • Burgess DJ (2012) Therapy: enhancing efficacy by reducing side effects. Nat Rev Cancer 12:377

    Google Scholar 

  • Cai Y, Shen H, Zhan J, Lin M, Dai L, Ren C, Shi Y, Liu J, Gao J, Yang Z (2017) Supramolecular “Trojan Horse” for nuclear delivery of dual anticancer drugs. J Am Chem Soc

    Google Scholar 

  • Camp ER, Wang C, Little EC, Watson PM, Pirollo KF, Rait A, Cole DJ, Chang EH, Watson DK (2013) Transferrin receptor targeting nanomedicine delivering wild-type p53 gene sensitizes pancreatic cancer to gemcitabine therapy. Cancer Gene Ther 20:222–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cancer Institute NSW (2017) https://www.cancerinstitute.org.au/understanding-cancer/what-are-the-different-stages-of-cancer. Accessed 25 Feb 2017

  • Caracciolo G (2013) The protein corona effect for targeted drug delivery. Bioinspired Biomimetic and Nanobiomater 2:54–57

    Article  CAS  Google Scholar 

  • Casás-Selves M, DeGregori J (2011) How cancer shapes evolution and how evolution shapes cancer. Evol Educ Outreach 4:624–634

    Google Scholar 

  • Chabner BA, Roberts TG (2005) Timeline: chemotherapy and the war on cancer. Nat Rev Cancer 5:65–72

    Article  CAS  PubMed  Google Scholar 

  • DeVita VT, Chu E (2008) A history of cancer chemotherapy. Can Res 68:8643–8653

    Article  CAS  Google Scholar 

  • Djurišić AB, Leung YH, Ng AMC, Xu XY, Lee PKH, Degger N, Wu RSS (2015) Toxicity of metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental Artefacts. Small 11:26–44

    Article  PubMed  Google Scholar 

  • Dostalova S, Cerna T, Hynek D, Koudelkova Z, Vaculovic T, Kopel P, Hrabeta J, Heger Z, Vaculovicova M, Eckschlager T, Stiborova M, Adam V (2016) Site-directed conjugation of antibodies to ApoferritinNanocarrier for targeted drug delivery to prostate cancer cells. ACS Appl Mater Interfaces 8:14430–14441

    Article  CAS  PubMed  Google Scholar 

  • Fakruddin M, Hossain Z, Afroz H (2012) Prospects and applications of nanobiotechnology: a medical perspective. J Nanobiotechnol 10:31

    Article  Google Scholar 

  • Fass L (2008) Imaging and cancer: a review. Mol Oncol 2:115–152

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171

    Article  CAS  PubMed  Google Scholar 

  • Fröhlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 7:5577–5591

    Google Scholar 

  • Gliga AR, Skoglund S, OdnevallWallinder I, Fadeel B, Karlsson HL (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol. 11:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Goymer P (2008) Natural selection: the evolution of cancer. Nature 454:1046–1048

    Article  CAS  PubMed  Google Scholar 

  • Guisbiers G, Mejía-Rosales S, Leonard Deepak F (2012) Nanomaterial properties: size and shape dependencies. J Nanomater 2012:1–2

    Article  Google Scholar 

  • Hamzeh M, Sunahara GI (2013) In vitro cytotoxicity and genotoxicity studies of titanium dioxide (TiO2) nanoparticles in Chinese hamster lung fibroblast cells. Toxicol In Vitro 27:864–873

    Article  CAS  PubMed  Google Scholar 

  • Harrison C (2013) Nanotechnology: biological proteins knock nanoparticles off target. Nat Rev Drug Discov 12:264

    CAS  PubMed  Google Scholar 

  • Iakovidis I, Delimaris I, Piperakis SM (2011) Copper and its complexes in medicine: a biochemical approach. Mol Biol Int 2011:1–13

    Article  Google Scholar 

  • Ivask A, Titma T, Visnapuu M, Vija H, Kakinen A, Sihtmae M, Pokhrel S, Madler L, Heinlaan M, Kisand V, Shimmo R, Kahru A (2015) Toxicity of 11 metal oxide nanoparticles to three mammalian cell types in vitro. Curr Top Med Chem 15:1914–1929

    Article  CAS  PubMed  Google Scholar 

  • Jain K (2009) Role of nanobiotechnology in the development of personalized medicine. Nanomedicine 4:249–252

    Article  CAS  PubMed  Google Scholar 

  • Kayl AE, Meyers CA (2006) Side-effects of chemotherapy and quality of life in ovarian and breast cancer patients. Curr Opin Obstet Gynecol 18:24–28

    Article  PubMed  Google Scholar 

  • Khandelia R, Jaiswal A, Ghosh SS, Chattopadhyay A (2013) Gold nanoparticle-protein agglomerates as versatile nanocarriers for drug delivery. Small 9:3494–3505

    Article  CAS  PubMed  Google Scholar 

  • Kim JA, Åberg C, Salvati A, Dawson KA (2011) Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population. Nat Nanotechnol 7:62–68

    Article  PubMed  Google Scholar 

  • Komarova NL, Boland CR (2013) Cancer: calculated treatment. Nature 499:291–292

    Article  CAS  PubMed  Google Scholar 

  • Liao L, Liu J, Dreaden EC, Morton SW, Shopsowitz KE, Hammond PT, Johnson JA (2014) A convergent synthetic platform for single-nanoparticle combination cancer therapy: ratiometric loading and controlled release of cisplatin, doxorubicin, and camptothecin. J Am Chem Soc 136:5896–5899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu PF, Liu D, Cai C, Chen X, Zhou Y, Wu L, Sun Y, Dai H, Kong X, Xie Y (2016) Size-dependent cytotoxicity of Fe3O4 nanoparticles induced by biphasic regulation of oxidative stress in different human hepatoma cells. Int J Nanomed 11:3557–3570

    Article  Google Scholar 

  • Ludwig JA, Weinstein JN (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5:845–856

    Article  CAS  PubMed  Google Scholar 

  • Marchant G (2009) Small is beautiful: what can nanotechnology do for personalized medicine? Curr Pharmacogenomics Personalized Med 7:231–237. doi:10.2174/187569209790112346

    Article  CAS  Google Scholar 

  • Mehlen P, Puisieux A (2006) Metastasis: a question of life or death. Nat Rev Cancer 6:449–458

    Article  CAS  PubMed  Google Scholar 

  • Mehta D, Guvva S, Patil M (2008) Future impact of nanotechnology on medicine and dentistry. J Indian Soc Periodontol 12:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyoshi N, Kundu SK, Tuziuti T, Yasui K, Shimada I, Ito Y (2016) Combination of sonodynamic and photodynamic therapy against cancer would be effective through using a regulated size of nanoparticles. Nanosci Nanoeng 4:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy JA, Chang S-H, Dvorak AM, Dvorak HF (2009) Why are tumour blood vessels abnormal and why is it important to know? Br J Cancer 100:865–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayana A (2014) Applications of nanotechnology in cancer: a literature review of imaging and treatment. J Nucl Med Radiat Ther 5:195

    Article  Google Scholar 

  • National Cancer Institute (2015) https://www.cancer.gov/about-cancer/diagnosis-staging/staging. Accessed 25 Feb 2017

  • Neagu M, Piperigkou Z, Karamanou K, Engin AB, Docea AO, Constantin C, Negrei C, Nikitovic D, Tsatsakis A (2017) Protein bio-corona: critical issue in immune nanotoxicology. Arch Toxicol 91:1031–1048

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3:1941–1949

    Article  CAS  PubMed  Google Scholar 

  • Paszko E, Ehrhardt C, Senge MO, Kelleher DP, Reynolds JV (2011) Nanodrug applications in photodynamic therapy. Photodiagn Photodyn Ther 8:14–29

    Article  CAS  Google Scholar 

  • Patel P, Kansara K, Senapati VA, Shanker R, Dhawan A, Kumar A (2016) Cell cycle dependent cellular uptake of zinc oxide nanoparticles in human epidermal cells. Mutagenesis 31:481–490

    Article  CAS  PubMed  Google Scholar 

  • Périgo EA, Hemery G, Sandre O, Ortega D, Garaio E, Plazaola F, Teran FJ (2015) Fundamentals and advances in magnetic hyperthermia. Appl Phys Rev 2:041302

    Article  Google Scholar 

  • Prabhu BM, Ali SF, Murdock RC, Hussain SM, Srivatsan M (2010) Copper nanoparticles exert size and concentration dependent toxicity on somatosensory neurons of rat. Nanotoxicology 4:150–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenblum D, Peer D (2014) Omics-based nanomedicine: the future of personalized oncology. Cancer Lett 352:126–136

    Article  CAS  PubMed  Google Scholar 

  • Sahoo AK, Goswami U, Dutta D, Banerjee S, Chattopadhyay A, Ghosh SS (2016) Silver nanocluster embedded composite nanoparticles for targeted prodrug delivery in cancer theranostics. ACS Biomater Sci Eng 2:1395–1402

    Article  CAS  Google Scholar 

  • Scott AM, Wolchok JD, Old LJ (2012) Antibody therapy of cancer. Nat Rev Cancer 12:278–287

    Article  CAS  PubMed  Google Scholar 

  • Soares T, Ribeiro D, Proença C, Chisté RC, Fernandes E, Freitas M (2016) Size-dependent cytotoxicity of silver nanoparticles in human neutrophils assessed by multiple analytical approaches. Life Sci 145:247–254

    Article  CAS  PubMed  Google Scholar 

  • Soenen SJ, Manshian B, Montenegro JM, Amin F, Meermann B, Thiron T, Cornelissen M, Vanhaecke F, Doak S, Parak WJ, De Smedt S, Braeckmans K (2012) Cytotoxic effects of gold nanoparticles: a multiparametric study. ACS Nano 6:5767–5783

    Article  CAS  PubMed  Google Scholar 

  • Stellacci F (2005) Nanoscale materials: a new season. Nat Mater 4:113–114

    Article  CAS  PubMed  Google Scholar 

  • Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458:719–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang W, Zhen Z, Wang M, Wang H, Chuang Y-J, Zhang W, Wang GD, Todd T, Cowger T, Chen H, Liu L, Li Z, Xie J (2016) Red blood cell-facilitated photodynamic therapy for cancer treatment. Adv Func Mater 26:1757–1768

    Article  CAS  Google Scholar 

  • Thariat J, Hannoun-Levi J-M, Sun Myint A, Vuong T, Gérard J-P (2012) Past, present, and future of radiotherapy for the benefit of patients. Nat Rev Clini Oncol 10:52–60

    Article  Google Scholar 

  • Tortorella S, Karagiannis TC (2014) Transferrin receptor-mediated endocytosis: a useful target for cancer therapy. J Membr Biol 247:291–307

    Article  CAS  PubMed  Google Scholar 

  • Vega D, Lodge P, Vivero-Escoto J (2015) Redox-responsive porphyrin-based polysilsesquioxane nanoparticles for photodynamic therapy of cancer cells. Int J Mol Sci 17:56

    Article  PubMed Central  Google Scholar 

  • Wang S, Low PS (1998) Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells. J Control Release 53:39–48

    Article  CAS  PubMed  Google Scholar 

  • Wongrakpanich A, Mudunkotuwa IA, Geary SM, Morris AS, Mapuskar KA, Spitz DR, Grassian VH, Salem AK (2016) Size-dependent cytotoxicity of copper oxide nanoparticles in lung epithelial cells. Environ Sci Nano 3:365–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S-T, Liu J-H, Wang J, Yuan Y, Cao A, Wang H, Liu Y, Zhao Y (2010) Cytotoxicity of zinc oxide nanoparticles: importance of microenvironment. J Nanosci Nanotechnol 10:8638–8645

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Wang (2012) Folate-mediated targeted and intracellular delivery of paclitaxel using a novel deoxycholicacid-O-carboxymethylatedchitosan–folic acid micelles. Int J Nanomed 7:325–337

    Google Scholar 

  • Zou L, Wang H, He B, Zeng L, Tan T, Cao H, He X, Zhang Z, Guo S, Li Y (2016) Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics 6:762–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L (2016) Current challenges in cancer treatment. Clin Ther 38:1551–1566

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaresh Kumar Sahoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahoo, A.K., Verma, A., Pant, P. (2017). Nanoformulations for Cancer Therapy. In: Rai, M., Alves dos Santos, C. (eds) Nanotechnology Applied To Pharmaceutical Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-70299-5_7

Download citation

Publish with us

Policies and ethics