Skip to main content

Role of Nanoparticles in Treatment of Human Parasites

  • Chapter
  • First Online:
Nanotechnology Applied To Pharmaceutical Technology

Abstract

Nanobiotechnology is an important field with many new applications. This opportunity has been greatly embraced by the medical research community in the continuous search of novel opportunities for improving disease diagnosis, drug design and delivery. Understanding the mechanisms of disease for the design of new drugs is not enough, and unfortunately, infectious diseases continue to be a major health burden worldwide. Since ancient times, metals and especially silver were known for their antibacterial effects, but these days available methodologies allow the further exploitation of metal in the form of nanoscale materials. Metal nanoparticles are attracting much interest because of their potent antibacterial activity, but many studies have also shown a meaningful activity of metal nanoparticles against viruses, fungi and parasites. This chapter aims to summarize emerging efforts for the application of metallic nanoparticles in the never-ending battle against parasitic diseases. We have focused on four of the major parasitic diseases that afflict millions of people worldwide, specifically malaria, leishmaniasis, trypanosomiasis and schistosomiasis. The failure to respond to the increasing demand for effective antiparasitic drugs made imperative to explore new avenues; therefore, metal and metal oxide nanoparticles seem to represent an excellent therapeutic alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Ag:

Silver

Ag2O:

Silver oxide

AgNPs:

Silver NPs

AgNPs:

Silver NPs

AK:

Arginine kinase

AmB:

Amphotericin B

Au:

Gold

AuNPs:

Gold NPs

CaO:

Calcium oxide

CL:

Cutaneous leishmaniasis

CNS:

Central nervous system

CQ:

Chloroquine

CQ-r:

CQ-resistant

CQ-s:

CQ-sensitive

CuO:

Copper oxide

DA:

Dopamine

FDA:

Food and drugs administration

FRET:

Fluorescence energy transfer

GSH:

Glutathione S-transferase

HBV:

Hepatitis B virus

HIV-1:

Human immunodeficiency virus type-1

HPIV-3:

Human parainfluenza virus type 3

HSV-1:

Herpes simplex virus type 1

HSV-2:

Herpes simplex virus type 2

MA:

Meglumine antimoniate

MDA:

Malondialdehyde

MgO:

Magnesium oxide

MgONPs:

Magnesium oxide NPs

ML:

Muco-cutaneous

MPV:

Monkeypox virus

MRSA:

Methicillin–resistant Staphylococcus aureus

MRSE:

Methicillin–resistant Staphylococcus epidermidis

MTT:

Tetrazolium salt colorimetric assay

NE:

Norepinephrine

NO:

Nitric oxide

NPs:

Nanoparticles

PdNPs:

Palladium NPs

PfCRT:

P. falciparum chloroquine resistance transport

PfThzK:

5-(2-hydroxyethyl)-4-methylthiazolekinase

PZQ:

Praziquantel

ROS:

Reactive oxygen species

SeNPs:

Selenium nanoparticles

SiO2 :

Silicon dioxide

TbAK:

Trypanosoma brucei AK

TCRV:

Tacaribe virus

TiO2 :

Titanium dioxide

TiO2Ag-NPs:

Silver-doped titanium dioxide nanoparticles

References

  • Abamor ES, Allahverdiyev AM (2016) A nanotechnology based new approach for chemotherapy of Cutaneous Leishmaniasis: TIO2@AG nanoparticles—Nigella sativa oil combinations. Exp Parasitol 166:150–163

    Article  CAS  PubMed  Google Scholar 

  • Adeyemi OS, Whiteley CG (2013) Interaction of nanoparticles with arginine kinase from Trypanosoma brucei: Kinetic and mechanistic evaluation. Int J Biol Macromol 62:450–456

    Google Scholar 

  • Adeyemi OS, Whiteley CG (2014) Interaction of metal nanoparticles with recombinant arginine kinase from Trypanosoma brucei: Thermodynamic and spectrofluorimetric evaluation. Biochem Biophys Acta 1840:701–706

    Google Scholar 

  • Ahmad A, Wei Y, Syed F, Khan S, Khan GM, Tahir K, Khan AU, Raza M, Khan FU, Yuan O (2016) Isatis tinctoria mediated synthesis of amphotericin B-bound silver nanoparticles with enhanced photoinduced antileishmanial activity: a novel green approach. J Photochem Photobiol B 161:17–24

    Article  CAS  PubMed  Google Scholar 

  • Allahverdiyev AM, Abamor ES, Bagirova M, Ustundag CB, Kaya C, Kaya F, Rafailovich M (2011) Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light. Int J Nanomed 6:2705–2714

    Article  CAS  Google Scholar 

  • Allahverdiyev AM, Abamor ES, Bagirova M, Baydar SY, Ates SC, Kaya F, Kaya C, Rafailovich M (2013) Investigation of antileishmanial activities of Tio2@Ag nanoparticles on biological properties of L. tropica and L. infantum parasites, in vitro. Exp Parasitol 135:55–63

    Article  CAS  PubMed  Google Scholar 

  • Arvizo RR, Miranda OR, Thompson MA, Pabelick CM, Bhattacharya R, Robertson JD, Rotello VM, Prakash YS, Mukherjee P (2010) Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett 10:2543–2548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asilian A, Davami M (2006) Comparison between the efficacy of photodynamic therapy and topical paromomycin in the treatment of Old World cutaneous leishmaniasis: a placebo-controlled, randomized clinical trial. Clin Exp Dermatol 31:634–637

    Article  CAS  PubMed  Google Scholar 

  • Bafghi AF, Daghighi M, Daliri K, Jebali A (2015) Magnesium oxide nanoparticles coated with glucose can silence important genes of Leishmania major at sub-toxic concentrations. Colloids Surf B 136:300–304

    Article  CAS  Google Scholar 

  • Bahadar H, Maqbool F, Niaz K, Abdollahi M (2016) Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 20:1–11

    PubMed  PubMed Central  Google Scholar 

  • Baiocco P, Ilari A, Ceci P, Orsini S, Gramiccia M, Di Muccio T, Colotti G (2010) Inhibitory effect of silver nanoparticles on Trypanothione reductase activity and Leishmania infantum proliferation. ACS Med Chem Lett 2:230–233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baram-Pinto D, Shukla S, Perkas N, Gedanken A, Sarid R (2009) Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjug Chem 20:1497–1502

    Article  CAS  PubMed  Google Scholar 

  • Baram-Pinto D, Shukla S, Gedanken A, Sarid R (2010) Inhibition of HSV-1 attachment, entry, and cell-to-cell spread by functionalized multivalent gold nanoparticles. Small 6:1044–1050

    Article  CAS  PubMed  Google Scholar 

  • Beheshti N, Soflaei S, Shakibaie M, Yazdi MH, Ghaffarifar F, Dalimi A, Shahverdi AR (2013) Efficacy of biogenic selenium nanoparticles against Leishmania major: in vitro and in vivo studies. J Trace Elem Med Biol 27:203–207

    Article  CAS  PubMed  Google Scholar 

  • Benelli G (2016) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115:23–34

    Article  PubMed  Google Scholar 

  • Bowman MC, Ballard TE, Ackerson CJ, Feldheim DL, Margolis DM, Melander C (2008) Inhibition of HIV fusion with multivalent gold nanoparticles. J Am Chem Soc 130:6896–6897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butkus MA, Labare MP, Starke JA, Moon K, Talbot M (2004) Use of aqueous silver to enhance inactivation of coliphage MS-2 by UV disinfection. Appl Environ Microbiol 70:2848–2853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen N, Zheng Y, Yin J, Li X, Zheng C (2013) Inhibitory effects of silver nanoparticles against adenovirus type 3 in vitro. J Virol Methods 193:470–477

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Chen X, Song W, Kong Z, Li P, Liu Y (2013) Contribution of silver ions to the inhibition of infectivity of Schistosoma japonicum cercariae caused by silver nanoparticles. Parasitology 140:617–625

    Article  CAS  PubMed  Google Scholar 

  • Daily JP (2017) Malaria 2017: update on the clinical literature and management. Current infectious disease reports

    Google Scholar 

  • Das S, Roy P, Mondal S, Bera T, Mukherjee A (2013) One pot synthesis of gold nanoparticles and application in chemotherapy of wild and resistant type visceral leishmaniasis. Colloids Surf B 107:27–34

    Article  CAS  Google Scholar 

  • den Boer M, Argaw D, Jannin J, Alvar J (2011) Leishmaniasis impact and treatment access. Clin Microbiol Infect 17:1471–1477

    Article  Google Scholar 

  • DeRussy BM, Aylward MA, Fan Z, Ray PC, Tandon R (2014) Inhibition of cytomegalovirus infection and photothermolysis of infected cells using bioconjugated gold nanoparticles. Sci Rep 4:5550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Kumar PM, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114:1519–1529

    Article  PubMed  Google Scholar 

  • Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C Mater Biol Appl 44:278–284

    Article  CAS  PubMed  Google Scholar 

  • Dizaj SM, Mennati A, Jafari S, Khezri K, Adibkia K (2015) Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 5:19–23

    Google Scholar 

  • Dkhil MA, Bauomy AA, Diab MS, Wahab R, Delic D, Al-Quraishy S (2015a) Impact of gold nanoparticles on brain of mice infected with Schistosoma mansoni. Parasitol Res 114:3711–3719

    Article  PubMed  Google Scholar 

  • Dkhil MA, Bauomy AA, Diab MS, Al-Quraishy S (2015b) Antioxidant and hepatoprotective role of gold nanoparticles against murine hepatic schistosomiasis. Int J Nanomed 10:7467–7475

    CAS  Google Scholar 

  • Dkhil MA, Bauomy AA, Diab MS, Al-Quraishy S (2016a) Protective role of selenium nanoparticles against Schistosoma mansoni induced hepatic injury in mice. Biomed Res 27:214–219

    CAS  Google Scholar 

  • Dkhil MA, Khalil MF, Bauomy AA, Diab MS, Al-Quraishy S (2016b) Efficacy of gold nanoparticles against nephrotoxicity Induced by Schistosoma mansoni infection in mice. Biomed Environ Sci 29:773–781

    PubMed  Google Scholar 

  • Doenhoff MJ, Cioli D, Utzinger J (2008) Praziquantel: mechanisms of action, resistance and new derivatives for schistosomiasis. Curr Opin Infect Dis 21:659–667

    Article  CAS  PubMed  Google Scholar 

  • dos Santos CA, Seckler MM, Ingle AP, Gupta I, Galdiero S, Galdiero M, Gade A, Rai M (2014) Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci 103:1931–1944

    Article  PubMed  CAS  Google Scholar 

  • Durán M, Faljoni-Alario A, Durán N (2010) Chromobacterium violaceum and its important metabolites–review. Folia Microbiol 55:535–547

    Article  CAS  Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6

    Article  Google Scholar 

  • Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharromán C, Moya JS (2009) The antibacterial and antifungal activity of a soda-lime glass containing silver nanoparticles. Nanotechnology 20:085103

    Article  CAS  PubMed  Google Scholar 

  • Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20:8856–8874

    Article  CAS  PubMed  Google Scholar 

  • Freitas-Junior LH, Chatelain E, Kim HA, Siqueira-Neto JL (2012) Visceral leishmaniasis treatment: what do we have, what do we need and how to deliver it? Int J Parasitol Drugs Drug Resist 2:11–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaikwad S, Ingle A, Gade A, Rai M, Falanga A, Incoronato N, Russo L, Galdiero S, Galdiero M (2013) Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomed 8:4303–4314

    Google Scholar 

  • Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M (2011) Silver nanoparticles as potential antiviral agents. Molecules 16:8894–8918

    Article  CAS  PubMed  Google Scholar 

  • Gardella F, Assi S, Simon F, Bogreau H, Eggelte T, Ba F, Foumane V, Henry MC, Kientega PT, Basco L, Trape JF, Lalou R, Martelloni M, Desbordes M, Baragatti M, Briolant S, Almeras L, Pradines B, Fusai T, Rogier C (2008) Antimalarial drug use in general populations of tropical Africa. Malaria J 7:124

    Article  Google Scholar 

  • Ge L, Li Q, Wang M, Ouyang J, Li X, Xing MM (2014) Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int J Nanomed 9:2399–2407

    Google Scholar 

  • Genes C, Baquero E, Echeverri F, Maya JD, Triana O (2011) Mitochondrial dysfunction in Trypanosoma cruzi: the role of Serratia marcescens prodigiosin in the alternative treatment of Chagas disease. Parasites Vectors 4:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghule K, Ghule AV, Chen BJ, Ling YC (2006) Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chem 8:1034–1041

    Article  CAS  Google Scholar 

  • Golbamaki N, Rasulev B, Cassano A, Marchese Robinson RL, Benfenati E, Leszczynski J, Cronin MT (2015) Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms. Nanoscale 7:2154–2198

    Article  CAS  PubMed  Google Scholar 

  • Gopinath V, Velusamy P (2013) Extracellular biosynthesis of silver nanoparticles using Bacillus sp GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochim Acta Part A Mol Biomol Spectrosc 106:170–174

    Article  CAS  Google Scholar 

  • Gutiérrez V, Seabra AB, Reguera RM, Khandare J, Calderón M (2016) New approaches from nanomedicine for treating leishmaniasis. Chem Soc Rev 45:152–168

    Article  PubMed  Google Scholar 

  • Hadrup N, Sharma AK, Poulsen M, Nielsen E (2015) Toxicological risk assessment of elemental gold following oral exposure to sheets and nanoparticles—a review. Regul Toxicol Pharmacol 72:216–221

    Article  CAS  PubMed  Google Scholar 

  • Hannan A, Saleem S, Chaudhary S, Barkaat M, Arshad MU (2008) Antibacterial activity of Nigella sativa against clinical isolates of methicillin resistant Staphylococcus aureus. J Ayub Med Coll Abbottabad 20:72–74

    PubMed  Google Scholar 

  • Hu RL, Li SR, Kong FJ, Hou RJ, Guan XL, Guo F (2014) Inhibition effect of silver nanoparticles on herpes simplex virus 2. Genet Mol Res 13:7022–7028

    Article  CAS  PubMed  Google Scholar 

  • Jaganathan A, Murugan K, Panneerselvam C, Madhiyazhagan P, Dinesh D, Vadivalagan C, Aziz AT, Chandramohan B, Suresh U, Rajaganesh R, Subramaniam J, Nicoletti M, Higuchi A, Alarfaj AA, Munusamy MA, Kumar S, Benelli G (2016) Earthworm-mediated synthesis of silver nanoparticles: a potent tool against hepatocellular carcinoma, Plasmodium falciparum parasites and malaria mosquitoes. Parasitol Int 65:276–284

    Article  CAS  PubMed  Google Scholar 

  • Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM (2009) Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm 6:1388–1401

    Article  CAS  PubMed  Google Scholar 

  • Jebali A, Kazemi B (2013) Nano-based antileishmanial agents: a toxicological study on nanoparticles for future treatment of cutaneous leishmaniasis. Toxicol In Vitro 27:1896–1904

    Article  CAS  PubMed  Google Scholar 

  • Jo DH, Kim JH, Lee TG, Kim JH (2015) Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine 11:1603–1611

    Article  CAS  PubMed  Google Scholar 

  • Kalangi SK, Dayakar A, Gangappa D, Sathyavathi R, Maurya RS, Narayana Rao D (2016) Biocompatible silver nanoparticles reduced from Anethum graveolens leaf extract augments the antileishmanial efficacy of miltefosine. Exp Parasitol 170:184–192

    Article  CAS  PubMed  Google Scholar 

  • Karthik L, Kumar G, Keswani T, Bhattacharyya A, Reddy BP, Rao KV (2013) Marine actinobacterial mediated gold nanoparticles synthesis and their antimalarial activity. Nanomedicine 9:951–960

    Article  CAS  PubMed  Google Scholar 

  • Kesarkar RO, Oza G, Pandey S, Dahake R, Mukherjee S, Chowdhary A, Sharon M (2012) Gold nanoparticles: effective as both entry inhibitors and virus neutralizing agents against HIV. J Microbiol Biotechnol Res 2:276

    CAS  Google Scholar 

  • Khan S, Ansari AA, Khan AA, Abdulla M, Al-Obaid O, Ahmad R (2017) In vitro evaluation of cytotoxicity, possible alteration of apoptotic regulatory proteins, and antibacterial activity of synthesized copper oxide nanoparticles. Colloids Surf B 153:320–326

    Article  CAS  Google Scholar 

  • Kim JY, Lee C, Cho M, Yoon J (2008) Enhanced inactivation of E. coli and MS-2 phage by silver ions combined with UV-A and visible light irradiation. Water Res 42:356–362

    Article  PubMed  CAS  Google Scholar 

  • King CH, Dickman K, Tisch DJ (2005) Reassessment of the cost of chronic helmintic infection: a meta-analysis of disability-related outcomes in endemic schistosomiasis. Lancet 365:1561–1569

    Article  PubMed  Google Scholar 

  • Klein TY, Wehling J, Treccani L, Rezwan K (2013) Effective bacterial inactivation and removal of copper by porous ceramics with high surface area. Environ Sci Technol 47:1065–1072

    Article  CAS  PubMed  Google Scholar 

  • Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta Part A Mol Biomol Spectrosc 93:95–99

    Article  CAS  Google Scholar 

  • Kwak SY, Kim SH, Kim SS (2001) Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. Preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane. Environ Sci Technol 35:2388–2394

    Article  CAS  PubMed  Google Scholar 

  • Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C (2010a) Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol 8:1

    Article  CAS  Google Scholar 

  • Lara HH, Ixtepan-Turrent L, Garza-Treviño EN, Rodriguez-Padilla C (2010b) PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture. J Nanobiotechnol 8:15

    Article  CAS  Google Scholar 

  • Lellouche J, Kahana E, Elias S, Gedanken A, Banin E (2009) Antibiofilm activity of nanosized magnesium fluoride. Biomaterials 30:5969–5978

    Article  CAS  PubMed  Google Scholar 

  • Lodge R, Descoteaux A (2006) Phagocytosis of Leishmania donovani amastigotes is Rac1 dependent and occurs in the absence of NADPH oxidase activation. Eur J Immunol 36:2735–2744

    Article  CAS  PubMed  Google Scholar 

  • Lopes SC, Blanco YC, Justo GZ, Nogueira PA, Rodrigues FL, Goelnitz U, Wunderlich G, Facchini G, Brocchi M, Duran N, Costa FT (2009) Violacein extracted from Chromobacterium violaceum inhibits Plasmodium growth in vitro and in vivo. Antimicrob Agents Chemother 53:2149–2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu L, Sun RW, Chen R, Hui CK, Ho CM, Luk JM, Lau GK, Che CM (2008) Silver nanoparticles inhibit hepatitis B virus replication. Antiviral Ther 13:253–262

    CAS  Google Scholar 

  • Mahmoud MR, El-Abhar HS, Saleh S (2002) The effect of Nigella sativa oil against the liver damage induced by Schistosoma mansoni infection in mice. J Ethnopharmacol 79:1–11

    Article  CAS  PubMed  Google Scholar 

  • Mahmoudvand H, Shakibaie M, Tavakoli R, Jahanbakhsh S, Sharifi I (2014) In vitro study of leishmanicidal activity of biogenic selenium nanoparticles against iranian isolate of sensitive and glucantime-resistant Leishmania tropica. Iran J Parasitol 9:452–460

    PubMed  PubMed Central  Google Scholar 

  • Mahmoudvand H, Tavakoli R, Sharififar F, Minaie K, Ezatpour B, Jahanbakhsh S, Sharifi I (2015) Leishmanicidal and cytotoxic activities of Nigella sativa and its active principle, thymoquinone. Pharm Biol 53:1052–1057

    Article  CAS  PubMed  Google Scholar 

  • Mastro AM, Hardy AW, Boasso A, Shearer GM, Eddy CR Jr, Kub FJ (2010) Non-toxic inhibition of HIV-1 replication with silver–copper nanoparticles. Med Chem Res 19:1074–1081

    Article  CAS  Google Scholar 

  • McGwire BS, Satoskar AR (2014) Leishmaniasis: clinical syndromes and treatment. QJM: Int J Med 107:7–14

    Article  CAS  Google Scholar 

  • Mehrbod P, Motamed N, Tabatabaian M, Estyar RS, Amini E, Shahidi M, Kheiri MT (2009) In Vitro antiviral effect of “Nanosilver” on influenza virus. DARU J Pharm Sci 17:88–93

    CAS  Google Scholar 

  • Mehta A, Shaha C (2006) Mechanism of metalloid-induced death in Leishmania spp.: role of iron, reactive oxygen species, Ca2+, and glutathione. Free Radic Biol Med 40:1857–1868

    Article  CAS  PubMed  Google Scholar 

  • Miranda MR, Canepa GE, Bouvier LA, Pereira CA (2006) Trypanosoma cruzi: oxidative stress induces arginine kinase expression. Exp Parasitol 114:341–344

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Kaushik NK, Sardar M, Sahal D (2013) Evaluation of antiplasmodial activity of green synthesized silver nanoparticles. Colloids Surf B 111:713–718

    Article  CAS  Google Scholar 

  • Moghaddam AB, Moniri M, Azizi S, Rahim RA, Ariff AB, Saad WZ, Namvar F, Navaderi M (2017) Biosynthesis of ZnO nanoparticles by a new Pichia kudriavzevii yeast strain and evaluation of their antimicrobial and antioxidant activities. Molecules 22

    Google Scholar 

  • Monge-Maillo B, Norman FF, Cruz I, Alvar J, López-Vélez R (2014) Visceral leishmaniasis and HIV coinfection in the mediterranean region. PLoS Neglected Trop Dis 8:3021

    Article  Google Scholar 

  • Müller IB, Hyde JE, Wrenger C (2010) Vitamin B metabolism in Plasmodium falciparum as a source of drug targets. Trends Parasitol 26:35–43

    Article  PubMed  CAS  Google Scholar 

  • Murthy S, Keystone J, Kissoon N (2013) Infections of the developing world. Crit Care Clin 29:485–507

    Article  PubMed  Google Scholar 

  • Murugan K, Samidoss CM, Panneerselvam C, Higuchi A, Roni M, Suresh U, Chandramohan B, Subramaniam J, Madhiyazhagan P, Dinesh D, Rajaganesh R, Alarfaj AA, Nicoletti M, Kumar S, Wei H, Canale A, Mehlhorn H, Benelli G (2015) Seaweed-synthesized silver nanoparticles: an eco-friendly tool in the fight against Plasmodium falciparum and its vector Anopheles stephensi? Parasitol Res 114:4087–4097

    Article  PubMed  Google Scholar 

  • Murugan K, Panneerselvam C, Subramaniam J, Madhiyazhagan P, Hwang JS, Wang L, Dinesh D, Suresh U, Roni M, Higuchi A, Nicoletti M, Benelli G (2016) Eco-friendly drugs from the marine environment: spongeweed-synthesized silver nanoparticles are highly effective on Plasmodium falciparum and its vector Anopheles stephensi, with little non-target effects on predatory copepods. Environ Sci Pollut Res Int 23:16671–16685

    Article  CAS  PubMed  Google Scholar 

  • Murugan K, Wei J, Alsalhi MS, Nicoletti M, Paulpandi M, Samidoss CM, Dinesh D, Chandramohan B, Paneerselvam C, Subramaniam J, Vadivalagan C, Wei H, Amuthavalli P, Jaganathan A, Devanesan S, Higuchi A, Kumar S, Aziz AT, Nataraj D, Vaseeharan B, Canale A, Benelli G (2017) Magnetic nanoparticles are highly toxic to chloroquine-resistant Plasmodium falciparum, dengue virus (DEN-2), and their mosquito vectors. Parasitol Res 116:495–502

    Article  PubMed  Google Scholar 

  • Nadhman A, Nazir S, Khan MI, Ayub A, Muhammad B, Khan M, Shams DF, Yasinzai M (2015) Visible-light-responsive ZnCuO nanoparticles: benign photodynamic killers of infectious protozoans. Int J Nanomed 10:6891–6903

    CAS  Google Scholar 

  • Nadhman A, Khan MI, Nazir S, Khan M, Shahnaz G, Raza A, Shams DF, Yasinzai M (2016) Annihilation of Leishmania by daylight responsive ZnO nanoparticles: a temporal relationship of reactive oxygen species-induced lipid and protein oxidation. Int J Nanomed 11:2451–2461

    Article  CAS  Google Scholar 

  • Nair S, Sasidharan A, Divya Rani VV, Menon D, Nair S, Manzoor K, Raina S (2009) Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J Mater Sci—Mater Med 20(Suppl 1):S235–S241

    Article  CAS  PubMed  Google Scholar 

  • Navarro JA, Sánchez J, Peñafiel-Verdú C, Buendía AJ, Altimira J, Vilafranca M (2010) Histopathological lesions in 15 cats with leishmaniosis. J Comp Pathol 143(4):297–302

    Article  CAS  PubMed  Google Scholar 

  • Nilforoushzadeh MA, Shirani-Bidabadi LA, Zolfaghari-Baghbaderani A, Jafari R, Heidari-Beni M, Siadat AH, Ghahraman-Tabrizi M (2012) Topical effectiveness of different concentrations of nanosilver solution on Leishmania major lesions in Balb/c mice. J Vector Borne Dis 49:249–253

    CAS  PubMed  Google Scholar 

  • Norman FF, Pérez de Ayala A, Pérez-Molina JA, Monge-Maillo B, Zamarrón P, López-Vélez R (2010) Neglected tropical diseases outside the tropics. PLOS Neglected Trop Dis 4:762

    Article  Google Scholar 

  • Panneerselvam C, Murugan K, Roni M, Aziz AT, Suresh U, Rajaganesh R, Madhiyazhagan P, Subramaniam J, Dinesh D, Nicoletti M, Higuchi A, Alarfaj AA, Munusamy MA, Kumar S, Desneux N, Benelli G (2016) Fern-synthesized nanoparticles in the fight against malaria: LC/MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanoparticles with high mosquitocidal and antiplasmodial activity. Parasitol Res 115:997–1013

    Article  PubMed  Google Scholar 

  • Rahul S, Chandrashekhar P, Hemant B, Bipinchandra S, Mouray E, Grellier P, Satish P (2015) In vitro antiparasitic activity of microbial pigments and their combination with phytosynthesized metal nanoparticles. Parasitol Int 64:353–356

    Article  CAS  PubMed  Google Scholar 

  • Rai MK, Deshmukh SD, Ingle AP, Gade AK (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112:841–852

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Kon K, Ingle A, Duran N, Galdiero S, Galdiero M (2014) Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl Microbiol Biotechnol 98:1951–1961

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Deshmukh SD, Ingle AP, Gupta IR, Galdiero M, Galdiero S (2016) Metal nanoparticles: the protective nanoshield against virus infection. Crit Rev Microbiol 42:46–56

    CAS  PubMed  Google Scholar 

  • Rai M, Ingle AP, Paralikar P, Gupta I, Medici S, Santos CA (2017) Recent advances in use of silver nanoparticles as antimalarial agents. Int J Pharm 526:254–270

    Article  CAS  PubMed  Google Scholar 

  • Rajakumar G, Rahuman AA, Chung IM, Kirthi AV, Marimuthu S, Anbarasan K (2015) Antiplasmodial activity of eco-friendly synthesized palladium nanoparticles using Eclipta prostrata extract against Plasmodium berghei in Swiss albino mice. Parasitol Res 114:1397–1406

    Article  PubMed  Google Scholar 

  • Rathore D, McCutchan TF, Sullivan M, Kumar S (2005) Antimalarial drugs: current status and new developments. Expert Opin Investig Drugs 14:871–883

    Article  CAS  PubMed  Google Scholar 

  • Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet JB (2008) Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother 61:869–876

    Article  CAS  PubMed  Google Scholar 

  • Rogers JV, Parkinson CV, Choi YW, Speshock JL, Hussain SM (2008) A preliminary assessment of silver nanoparticles inhibition of Monkey poxvirus plaque formation. Nanoscale Res Lett 3:129–133

    Article  PubMed Central  CAS  Google Scholar 

  • Salem ANB, Zyed R, Lassoued MA, Nidhal S, Sfar S, Mahjoub A (2012) Plant-derived nanoparticles enhance antiviral activity against Coxsakie virus B3 by acting on virus particles and vero cells. Dig J Nanomater Biostruct 7:737–744

    Google Scholar 

  • Sazgarnia A, Taheri AR, Soudmand S, Parizi AJ, Rajabi O, Darbandi MS (2013) Antiparasitic effects of gold nanoparticles with microwave radiation on promastigots and amastigotes of Leishmania major. Int J Hyperth 29:79–86

    Article  CAS  Google Scholar 

  • Sindermann H, Engel J (2006) Development of miltefosine as an oral treatment for leishmaniasis. Trans R Soc Trop Med Hyg 1:17–20

    Article  CAS  Google Scholar 

  • Song X, Zhang J, Li E, Lu N, Yin F (2006) Preparation and characterization of rare-earth bulks with controllable nanostructures. Nanotechnology 17:5584–5589

    Article  CAS  PubMed  Google Scholar 

  • Speshock JL, Murdock RC, Braydich-Stolle LK, Schrand AM, Hussain SM (2010) Interaction of silver nanoparticles with Tacaribe virus. J Nanobiotechnol 8:19

    Article  CAS  Google Scholar 

  • Steinmann P, Keiser J, Bos R, Tanner M, Utzinger J (2006) Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect Dis 6:411–425

    Article  PubMed  Google Scholar 

  • Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Dinesh D, Kumar PM, Chandramohan B, Suresh U, Rajaganesh R, Alsalhi MS, Devanesan S, Nicoletti M, Canale A, Benelli G (2016) Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: high antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators. Environ Sci Pollut Res Int 23:7543–7558

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Singh AK, Vig K, Pillai S, Shreekumar R, Singh SR (2008) Silver nanoparticles inhibit replication of respiratory Sincytial virus. J Biomed Nanotechnol 4:149–158

    CAS  Google Scholar 

  • Sun RW, Chen R, Chung NP, Ho CM, Lin CL, Che CM (2005) Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chem Commun 40:5059–5061

    Article  CAS  Google Scholar 

  • Sundar S, Olliaro PL (2007) Miltefosine in the treatment of leishmaniasis: clinical evidence for informed clinical risk management. Ther Clin Risk Manag 3:733–740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sundar S, Chakravarty J (2015) Investigational drugs for visceral leishmaniasis. Expert Opin Investig Drugs 24:43–59

    Article  CAS  PubMed  Google Scholar 

  • Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Kumar PM, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera Culicidae). Parasitol Res 114:1551–1562

    Article  PubMed  Google Scholar 

  • Taylor U, Rehbock C, Streich C, Rath D, Barcikowski S (2014) Rational design of gold nanoparticle toxicology assays: a question of exposure scenario, dose and experimental setup. Nanomedicine 9:1971–1989

    Article  CAS  PubMed  Google Scholar 

  • Tiuman TS, Santos AO, Ueda-Nakamura T, Filho BP, Nakamura CV (2011) Recent advances in leishmaniasis treatment. Int J Infect Dis 15:525–532

    Article  CAS  Google Scholar 

  • Trefry JC, Wooley DP (2013) Silver nanoparticles inhibit vaccinia virus infection by preventing viral entry through a macropinocytosis-dependent mechanism. J Biomed Nanotechnol 9:1624–1635

    Article  CAS  PubMed  Google Scholar 

  • Uchida M, Terashima M, Cunningham CH, Suzuki Y, Willits DA, Willis AF, Yang PC, Tsao PS, McConnell MV, Young MJ, Douglas T (2008) A human ferritin iron oxide nano-composite magnetic resonance contrast agent. Magn Reson Med 60:1073–1081

    Article  CAS  PubMed  Google Scholar 

  • Utzinger J, Keiser J (2004) Schistosomiasis and soil-transmitted helminthiasis: common drugs for treatment and control. Expert Opin Pharmacother 5:263–285

    Article  CAS  PubMed  Google Scholar 

  • Vijayakumar S, Ganesan S (2012) Gold nanoparticles as an HIV entry inhibitor. Curr HIV Res 10:643–646

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Li Q, Reyes S, Zhang J, Zeng Q, Zhang P, Xie L, Lee PJ, Roncal N, Melendez V, Hickman M, Kozar MP (2014) Nanoparticle formulations of decoquinate increase antimalarial efficacy against liver stage Plasmodium infections in mice. Nanomedicine 10:57–65

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization, WHO (2010) Control of the leishmaniasis. World Health Organ Tech Rep 949:22–26

    Google Scholar 

  • World Health Organization, WHO (2013) Sustaining the drive to overcome the global impact of neglected tropical diseases. Second WHO report on neglected tropical diseases

    Google Scholar 

  • World Health Organization, WHO (2015) http://www.who.int/mediacentre/news/releases/2016/malaria-control-africa/en/

  • World Health Organization, WHO (2017) http://www.who.int/mediacentre/factsheets/fs259/en/

  • Wrenger C, Eschbach ML, Müller IB, Warnecke D, Walter RD (2005) Analysis of the vitamin B6 biosynthesis pathway in the human malaria parasite Plasmodium falciparum. J Biol Chem 280:5242–5248

    Article  CAS  PubMed  Google Scholar 

  • Wrenger C, Eschbach ML, Müller IB, Laun NP, Begley TP, Walter RD (2006) Vitamin B1 de novo synthesis in the human malaria parasite Plasmodium falciparum depends on external provision of 4-amino-5-hydroxymethyl-2-methylpyrimidine. Biol Chem 387:41–51

    Article  CAS  PubMed  Google Scholar 

  • Xiang DX, Chen Q, Pang L, Zheng CL (2011) Inhibitory effects of silver nanoparticles on H1N1 influenza A virus in vitro. J Virol Methods 178:137–142

    Article  CAS  PubMed  Google Scholar 

  • Yao J, van Marwijk J, Wilhelmi B, Whiteley CG (2015) Isolation, characterization, interaction of a thiazolekinase (Plasmodium falciparum) with silvernanoparticles. Int J Biol Macromol 79:644–653

    Article  CAS  PubMed  Google Scholar 

  • Zahir AA, Chauhan IS, Bagavan A, Kamaraj C, Elango G, Shankar J, Arjaria N, Roopan SM, Rahuman AA, Singh N (2015) Green synthesis of silver and titanium dioxide nanoparticles using Euphorbia prostrata extract shows shift from apoptosis to G0/G1 arrest followed by necrotic cell death in Leishmania donovani. Antimicrob Agents Chemother 59:4782–4799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Li W, Yang Z (2015a) Toxicology of nanosized titanium dioxide: an update. Arch Toxicol 89:2207–2217

    Google Scholar 

  • Zhang Y, Shareena Dasari TP, Deng H, Yu H (2015b) Antimicrobial activity of gold nanoparticles and ionic gold. J Environ Sci Health Part C Environ Carcinog Ecotoxicol Rev 33:286–327

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Franci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Della Pepa, M.E., Martora, F., Finamore, E., Vitiello, M., Galdiero, M., Franci, G. (2017). Role of Nanoparticles in Treatment of Human Parasites. In: Rai, M., Alves dos Santos, C. (eds) Nanotechnology Applied To Pharmaceutical Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-70299-5_13

Download citation

Publish with us

Policies and ethics