Skip to main content

Lipid-Based Nanoformulations for Treatment of Skin Diseases

  • Chapter
  • First Online:
Book cover Nanotechnology Applied To Pharmaceutical Technology

Abstract

Two past decades have seen the rapid emergence of nanotechnology. Recent findings in the field of nanotechnology have led to exciting opportunities in biomedical research specially delivery systems. Nanoformulations have been developed with aim to enhance the efficacy and reduce toxicity of drugs by addressing multiple drug delivery challenges such as bioavailability and solubility. In the past decades, various nanocarriers—some approved by the FDA, some undergoing investigation—have been reported for their applications in medicine. Among them, lipid-based nanoformulations have attracted considerable attention because of their unique properties including good biocompatibility and versatility of the lipids used and improved solubility of hydrophobic compounds. In this chapter, we focus on application of lipid-based nanoformulations for systemic and topical treatments of skin diseases. We first describe the structure of the skin and lipid-based nanoformulations. In the next section, treatment of skin disorders using these nanosystems (such as liposomes, ethosomes, etc.) is comprehensively reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

5-FU:

5-fluorouracil

Ac-PHSCN-NH2:

N-acetyl-proline-histidine-serine-cysteine-asparagine-amide

AD:

Atopic dermatitis

BCC:

Basal cell carcinoma

BMV:

Betamethasone-17-valerate

BSA:

Body surface area

BUP:

Budesonide disodium phosphate

CERs:

Ceramides

CHOL:

Cholesterol

DXP:

Dexamethasone disodium phosphate

Dox:

Doxorubicin

EN:

Econazole nitrate

FGF:

Fibroblast growth factor

FLZ:

Fluconazole

FFAs:

Free fatty acids

LUV:

Large unilamellar vesicles

MTX:

Methotrexate

MPLP:

Methylprednisolone disodium phosphate

MLV:

Multilamellar vesicles

NLCs :

Nanostructured lipid carriers

NSVs:

Non-ionic surfactant vesicles

PDT:

Topical photodynamic therapy

PIC:

Polyinosinic-polycytidylic acid

PLP:

Prednisolone phosphate

PAR-1:

Protease-activated receptor-1

SUV:

Small unilamellar vesicles

SDS:

Sodium deoxycholate

SLN :

Solid lipid nanoparticles

SCC:

Squamous cell carcinoma

SC:

Stratum corneum

TELs:

Transethosomes

TFs:

Transfersomes

TMP:

N,N,N-trimethylphytosphingosine-iodide

References

  • Agarwal R, Katare O, Vyas S (2001) Preparation and in vitro evaluation of liposomal/niosomal delivery systems for antipsoriatic drug dithranol. Int J Pharm 228:43–52

    Article  CAS  PubMed  Google Scholar 

  • Agrawal Y, Petkar KC, Sawant KK (2010) Development, evaluation and clinical studies of Acitretin loaded nanostructured lipid carriers for topical treatment of psoriasis. Int J Pharm 401:93–102

    Article  CAS  PubMed  Google Scholar 

  • Ainbinder D, Paolino D, Fresta M, Touitou E (2010) Drug delivery applications with ethosomes. J Biomed Nanotechnol 6:558–568. doi:10.1166/jbn.2010.1152

    Article  CAS  PubMed  Google Scholar 

  • Ali MFM, Salah M, Rafea M, Saleh N (2008) Liposomal methotrexate hydrogel for treatment of localized psoriasis: preparation, characterization and laser targeting. Med Sci Monit 14:I66–I74

    Google Scholar 

  • Al-Jamal WT, Al-Jamal KT, Bomans PH, Frederik PM, Kostarelos K (2008) Functionalized-quantum-dot–liposome hybrids as multimodal nanoparticles for cancer. Small 4:1406–1415

    Article  CAS  PubMed  Google Scholar 

  • Arias JL (2013) Liposomes in drug delivery: a patent review (2007–present). Expert Opin Ther Pat 23:1399–1414. doi:10.1517/13543776.2013.828035

    Article  CAS  PubMed  Google Scholar 

  • Banciu M, Schiffelers RM, Fens MH, Metselaar JM, Storm G (2006) Anti-angiogenic effects of liposomal prednisolone phosphate on B16 melanoma in mice. J Controlled Release 113:1–8

    Article  CAS  Google Scholar 

  • Banciu M, Metselaar JM, Schiffelers RM, Storm G (2008) Liposomal glucocorticoids as tumor-targeted anti-angiogenic nanomedicine in B16 melanoma-bearing mice. J steroid biochem mol biol 111:101–110

    Article  CAS  PubMed  Google Scholar 

  • Benson HAE (2006) Transfersomes for transdermal drug delivery. Expert Opin Drug Deliv 3:727–737. doi:10.1517/17425247.3.6.727

    Article  CAS  PubMed  Google Scholar 

  • Boguniewicz M, Leung DYM (2011) Atopic dermatitis: a disease of altered skin barrier and immune dysregulation. Immunol Rev 242:233–246. doi:10.1111/j.1600-065X.2011.01027.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai L, Wang X, Wang W, Qiu N, Wen J, Duan X, Li X, Chen X, Yang L, Qian Z, Wei Y (2012) Peptide ligand and PEG-mediated long-circulating liposome targeted to FGFR overexpressing tumor in vivo. Int J Nanomed 7:4499–4510

    CAS  Google Scholar 

  • Dai W, Yang T, Wang Y, Wang X, Wang J, Zhang X, Zhang Q (2012) Peptide PHSCNK as an integrin α 5 β 1 antagonist targets stealth liposomes to integrin-overexpressing melanoma. Nanomed: Nanotechnol Biol Med 8:1152–1161

    Article  CAS  Google Scholar 

  • Deng C, Zhang Q, Fu Y, Sun X, Gong T, Zhang Z (2017) Coadministration of oligomeric hyaluronic acid modified liposomes with tumor penetrating peptide-iRGD enhances the antitumor efficacy of doxorubicin against melanoma. ACS Appl Mater Interfaces

    Google Scholar 

  • Dicheva BM, ten Hagen TL, Seynhaeve AL, Amin M, Eggermont AM, Koning GA (2015) Enhanced specificity and drug delivery in tumors by cRGD-anchoring thermosensitive liposomes. Pharm Res 32:3862–3876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dicheva BM, Seynhaeve AL, Soulie T, Eggermont AM, ten Hagen TL, Koning GA (2016) Pharmacokinetics, tissue distribution and therapeutic effect of cationic thermosensitive liposomal doxorubicin upon mild hyperthermia. Pharm Res 33:627–638

    Article  CAS  PubMed  Google Scholar 

  • Elewa RM, Abdallah MA, Zouboulis CC (2015) Age-associated skin changes in innate immunity markers reflect a complex interaction between aging mechanisms in the sebaceous gland. J dermatol 42:467–476

    Article  CAS  PubMed  Google Scholar 

  • Fenner J, Clark RA (2016) Anatomy, physiology, histology, and immunohistochemistry of human skin. Skin tissue engineering and regenerative medicine, pp 1–17

    Google Scholar 

  • Fujimura T, Nakagawa S, Ohtani T, Ito Y, Aiba S (2006) Inhibitory effect of the polyinosinic-polycytidylic acid/cationic liposome on the progression of murine B16F10 melanoma. Eur J Immunol 36:3371–3380

    Article  CAS  PubMed  Google Scholar 

  • Garg T, Goyal AK (2014) Liposomes targeted and controlled delivery system. Drug Delivery Lett 4:62–71

    Google Scholar 

  • Guo J, Ping Q, Sun G, Jiao C (2000) Lecithin vesicular carriers for transdermal delivery of cyclosporin A. Int J Pharm 194:201–207

    Article  CAS  PubMed  Google Scholar 

  • Gupta M, Goyal AK, Paliwal SR, Paliwal R, Mishra N, Vaidya B, Dube D, Jain SK, Vyas SP (2010) Development and characterization of effective topical liposomal system for localized treatment of cutaneous candidiasis. J Liposome Res 20:341–350

    Article  CAS  PubMed  Google Scholar 

  • Gupta M, Tiwari S, Vyas SP (2013) Influence of various lipid core on characteristics of SLNs designed for topical delivery of fluconazole against cutaneous candidiasis. Pharm Dev Technol 18:550–559

    Article  CAS  PubMed  Google Scholar 

  • Honeywell-Nguyen PL, Bouwstra JA (2005) Vesicles as a tool for transdermal and dermal delivery. Drug Discovery Today: Technol 2:67–74. doi:10.1016/j.ddtec.2005.05.003

    Article  CAS  Google Scholar 

  • Huang FY, Mei WL, Li YN, Tan GH, Dai HF, Guo JL, Wang H, Huang YH, Zhao HG, Zhou SL, Li L (2012) The antitumour activities induced by pegylated liposomal cytochalasin D in murine models. Eur J Cancer 48:2260–2269

    Article  CAS  PubMed  Google Scholar 

  • Hwang T-L, Lee W-R, Hua S-C, Fang J-Y (2007) Cisplatin encapsulated in phosphatidylethanolamine liposomes enhances the in vitro cytotoxicity and in vivo intratumor drug accumulation against melanomas. J Dermatol Sci 46:11–20

    Article  CAS  PubMed  Google Scholar 

  • Janfaza S, Molaeirad A, Mohamadpour R, Khayati M, Mehrvand J (2014) Efficient bio-nano hybrid solar cells via purple membrane as sensitizer. BioNanoSci 4:71–77. doi:10.1007/s12668-013-0118-1

    Article  Google Scholar 

  • Jensen LB, Petersson K, Nielsen HM (2011) In vitro penetration properties of solid lipid nanoparticles in intact and barrier-impaired skin. Eur J Pharm Biopharm 79:68–75

    Article  CAS  PubMed  Google Scholar 

  • Kang MJ, Eum JY, Park SH, Kang MH, Park KH, Choi SE, Lee MW, Kang KH, Oh CH, Choi YW (2010) Pep-1 peptide-conjugated elastic liposomal formulation of taxifolin glycoside for the treatment of atopic dermatitis in NC/Nga mice. Int J Pharm 402:198–204

    Article  CAS  PubMed  Google Scholar 

  • Lin M-W, Huang Y-B, Chen C-L, Wu P-C, Chou C-Y, Wu P-C, Hung S-Y (2016) A formulation study of 5-aminolevulinic encapsulated in DPPC Liposomes in melanoma treatment. Int J Med Sci 13:483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahyad B, Janfaza S, Hosseini ES (2015) Bio-nano hybrid materials based on bacteriorhodopsin: potential applications and future strategies. Adv Coll Interface Sci 225:194–202. doi:10.1016/j.cis.2015.09.006

    Article  CAS  Google Scholar 

  • Marcott C, Lo M, Kjoller K, Domanov Y, Balooch G, Luengo GS (2013) Nanoscale infrared (IR) spectroscopy and imaging of structural lipids in human stratum corneum using an atomic force microscope to directly detect absorbed light from a tunable IR laser source. Exp Dermatol 22:419–421

    Article  CAS  PubMed  Google Scholar 

  • Mehnert W, Mäder K (2001) Solid lipid nanoparticles: Production, characterization and applications. Adv Drug Deliv Rev 47:165–196. doi:10.1016/S0169-409X(01)00105-3

    Article  CAS  PubMed  Google Scholar 

  • Moghassemi S, Hadjizadeh A (2014) Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Controlled Release 185:22–36. doi:10.1016/j.jconrel.2014.04.015

    Article  CAS  Google Scholar 

  • Montenegro L, Lai F, Offerta A, Sarpietro MG, Micicchè L, Maccioni AM, Valenti D, Fadda AM (2016) From nanoemulsions to nanostructured lipid carriers: a relevant development in dermal delivery of drugs and cosmetics. J Drug Deliv Sci Technol 32:100–112

    Article  CAS  Google Scholar 

  • MĂĽller RH, Radtke M, Wissing SA (2002) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 54(Supplement):S131–S155. doi:10.1016/S0169-409X(02)00118-7

    Article  PubMed  Google Scholar 

  • MĂĽller RH, Petersen RD, Hommoss A, Pardeike J (2007) Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev 59:522–530. doi:10.1016/j.addr.2007.04.012

    Article  PubMed  Google Scholar 

  • Ng KW, Lau WM (2015) Skin deep: the basics of human skin structure and drug penetration. In: Percutaneous penetration enhancers chemical methods in penetration enhancement. Springer, pp 3–11

    Google Scholar 

  • Paolino D, Cosco D, Muzzalupo R, Trapasso E, Picci N, Fresta M (2008) Innovative bola-surfactant niosomes as topical delivery systems of 5-fluorouracil for the treatment of skin cancer. Int J Pharm 353:233–242

    Article  CAS  PubMed  Google Scholar 

  • Parisi R, Symmons DPM, Griffiths CEM, Ashcroft DM (2013) Global epidemiology of psoriasis: a systematic review of incidence and prevalence. J Invest Dermatol 133:377–385. doi:10.1038/jid.2012.339

    Article  CAS  PubMed  Google Scholar 

  • Pople PV, Singh KK (2010) Targeting tacrolimus to deeper layers of skin with improved safety for treatment of atopic dermatitis. Int J Pharm 398:165–178

    Article  CAS  PubMed  Google Scholar 

  • Pople PV, Singh KK (2011) Development and evaluation of colloidal modified nanolipid carrier: application to topical delivery of tacrolimus. Eur J Pharm Biopharm 79:82–94

    Article  CAS  PubMed  Google Scholar 

  • Razavi H, Janfaza S (2015a) Medical nanobiosensors: a tutorial review. Nanomed J 2:74–87

    Google Scholar 

  • Razavi H, Janfaza S (2015b) Ethosome: a nanocarrier for transdermal drug delivery. J Paramed Sci 6

    Google Scholar 

  • Razavi H, Darvishi MH, Janfaza S (2017) Silver sulfadiazine encapsulated in lipid-based nanocarriers for burn treatment. J Burn Care Res. doi:10.1097/BCR.0000000000000602

    PubMed  Google Scholar 

  • Saraswat A, Agarwal R, Kaur I, Katare OP, Kumar B (2002) Fabric-staining properties and washability of a novel liposomal dithranol formulation. J Dermatol Treat 13:119–122

    Article  CAS  Google Scholar 

  • Scharschmidt TC, Vasquez KS, Truong HA, Gearty SV, Pauli ML, Nosbaum A, Gratz IK, Otto M, Moon JJ, Liese J, Abbas AK (2015) A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes. Immunity 43:1011–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreier H, Bouwstra J (1994) Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery. J Controlled Release 30:1–15. doi:10.1016/0168-3659(94)90039-6

    Article  CAS  Google Scholar 

  • Scognamiglio I, De Stefano D, Campani V, Mayol L, Carnuccio R, Fabbrocini G, Ayala F, La Rotonda MI, De Rosa G (2013) Nanocarriers for topical administration of resveratrol: a comparative study. Int J Pharm 440:179–187

    Article  CAS  PubMed  Google Scholar 

  • Shahbuddin M (2014) Development of konjac glucomannan hydrogels for wound healing. University of Sheffield

    Google Scholar 

  • Simpson EL (2010) Atopic dermatitis: a review of topical treatment options. Curr Med Res Opin 26:633–640. doi:10.1185/03007990903512156

    Article  CAS  PubMed  Google Scholar 

  • Song CK, Balakrishnan P, Shim C-K, Chung S-J, Chong S, Kim D-D (2012a) A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: characterization and in vitro/in vivo evaluation. Colloids Surf, B 92:299–304

    Article  CAS  Google Scholar 

  • Song CK, Lee JH, Jahn A, Choi MJ, Namgoong SK, Hong SS, Chong S, Shim CK, Chung SJ, Kim DD (2012b) in vitro and in vivo evaluation of N, N, N-trimethylphytosphingosine-iodide (TMP) in liposomes for the treatment of angiogenesis and metastasis. Int J Pharm 434:191–198

    Article  CAS  PubMed  Google Scholar 

  • Song H, Su X, Yang K, Niu F, Li J, Song J, Chen H, Li B, Li W, Qian W, Cao X (2015) CD20 antibody-conjugated immunoliposomes for targeted chemotherapy of melanoma cancer initiating cells. J Biomed Nanotechnol 11:1927–1946

    Article  CAS  PubMed  Google Scholar 

  • Sun M, Wang Y, Shen J, Xiao Y, Su Z, Ping Q (2010) Octreotide-modification enhances the delivery and targeting of doxorubicin-loaded liposomes to somatostatin receptors expressing tumor in vitro and in vivo. Nanotechnology 21:475101

    Article  PubMed  Google Scholar 

  • Thielen AM, Kuenzli S, Saurat JH (2005) Cutaneous adverse events of biological therapy for psoriasis: review of the literature. Dermatology 211:209–217

    Article  CAS  PubMed  Google Scholar 

  • Touitou E (1996) Compositions for applying active substances to or through the skin. Google Patents

    Google Scholar 

  • Trotta M, Peira E, Debernardi F, Gallarate M (2002) Elastic liposomes for skin delivery of dipotassium glycyrrhizinate. Int J Pharm 241:319–327

    Article  CAS  PubMed  Google Scholar 

  • Veerapu G, Gangadharappa HV, Nagashubha B, Balamuralidhara V (2014) Review on novel Carrier System: liposomes and Proliposomes. Drug Delivery Letters 4:96–109

    Article  CAS  Google Scholar 

  • Vemuri S, Rhodes CT (1995) Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm Acta Helv 70:95–111. doi:10.1016/0031-6865(95)00010-7

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Pathak K (2012) Nanosized ethanolic vesicles loaded with econazole nitrate for the treatment of deep fungal infections through topical gel formulation. Nanomed: Nanotechnol, Biol Med 8:489–496

    Article  CAS  Google Scholar 

  • Villares GJ, Zigler M, Wang H, Melnikova VO, Wu H, Friedman R, Leslie MC, Vivas-Mejia PE, Lopez-Berestein G, Sood AK, Bar-Eli M (2008) Targeting melanoma growth and metastasis with systemic delivery of liposome-incorporated protease-activated receptor-1 small interfering RNA. Can Res 68:9078–9086

    Article  CAS  Google Scholar 

  • Vitorino C, Sousa J, Pais A (2015) Overcoming the skin permeation barrier: challenges and opportunities. Curr Pharm Des 21:2698–2712

    Article  CAS  PubMed  Google Scholar 

  • Yonenaga N, Kenjo E, Asai T, Tsuruta A, Shimizu K, Dewa T, Nango M, Oku N (2012) RGD-based active targeting of novel polycation liposomes bearing siRNA for cancer treatment. J Controlled Release 160:177–181

    Article  CAS  Google Scholar 

  • Zhang J, Smith E (2011) Percutaneous permeation of betamethasone 17-valerate incorporated in lipid nanoparticles. J Pharm Sci 100:896–903

    Article  CAS  PubMed  Google Scholar 

  • Zhang L-W, Wen C-J, Al-Suwayeh SA, Yen T-C, Fang J-Y (2012) Cisplatin and quantum dots encapsulated in liposomes as multifunctional nanocarriers for theranostic use in brain and skin. J Nanopart Res 14:882

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajjad Janfaza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Janfaza, S., Razavi, S. (2017). Lipid-Based Nanoformulations for Treatment of Skin Diseases. In: Rai, M., Alves dos Santos, C. (eds) Nanotechnology Applied To Pharmaceutical Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-70299-5_10

Download citation

Publish with us

Policies and ethics