Skip to main content

Generating Functionally Equivalent Programs Having Non-isomorphic Control-Flow Graphs

  • Conference paper
  • First Online:
Secure IT Systems (NordSec 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10674))

Included in the following conference series:

Abstract

One of the big challenges in program obfuscation consists in modifying not only the program’s straight-line code (SLC) but also the program’s control flow graph (CFG). Indeed, if only SLC is modified, the program’s CFG can be extracted and analyzed. Usually, the CFG leaks a considerable amount of information on the program’s structure.

In this work we propose a method allowing to re-write a code P into a functionally equivalent code \(P'\) such that \({\text {CFG}}(P)\) and \({\text {CFG}}(P')\) are radically different.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cappaert, J., Preneel, B.: A general model for hiding control flow. In Proceedings of the tenth annual ACM workshop on Digital rights management, pp. 35–42. ACM, 2010

    Google Scholar 

  2. Chow, S., Gu, Y., Johnson, H., Zakharov, V.A.: An approach to the obfuscation of control-flow of sequential computer programs. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200, pp. 144–155. Springer, Heidelberg (2001). doi:10.1007/3-540-45439-X_10

    Chapter  Google Scholar 

  3. Davi, L.V.: Code-Reuse attacks and defenses. Ph.D. thesis (2015)

    Google Scholar 

  4. Dullien, T., Rolles, R.: Graph-based comparison of executable objects (English version). In: SSTIC, vol. 5, pp. 1–3 (2005)

    Google Scholar 

  5. Eswaran, K.P., Tarjan, R.E.: Augmentation problems. SIAM J. Comput. 5(4), 653–665 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  6. Flake, H.: Structural comparison of executable objects. In: DIMVA 2004, 6–7 July, Dortmund, Germany, pp. 161–173 (2004)

    Google Scholar 

  7. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Polymorphic worm detection using structural information of executables. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, vol. 3858, pp. 207–226. Springer, Heidelberg (2006). doi:10.1007/11663812_11

    Chapter  Google Scholar 

  8. László, T., Kiss, Á.: Obfuscating C++ programs via control flow flattening. Annales Universitatis Scientarum Budapestinensis de Rolando Eötvös Nominatae, Sectio Computatorica 30, 3–19 (2009)

    MATH  Google Scholar 

  9. Leroy, X.: The CompCert C verified compiler: documentation and user’s manual. Ph.D. thesis, Inria (2015)

    Google Scholar 

  10. Linn, C., Debray, S.: Obfuscation of executable code to improve resistance to static disassembly. In: Proceedings of the 10th ACM Conference on Computer and Communications Security, pp. 290–299. ACM (2003)

    Google Scholar 

  11. Popov, I.V., Debray, S.K., Andrews, G.R.: Binary obfuscation using signals. In: USENIX Security (2007)

    Google Scholar 

  12. Raghavan, S.: A note on Eswaran and Tarjan’s algorithm for the strong connectivity augmentation problem. In: Golden, B., Raghavan, S., Wasil, E. (eds.) The Next Wave in Computing, Optimization, and Decision Technologies, vol. 29. Springer, Boston (2005). doi:10.1007/0-387-23529-9_2

    Google Scholar 

  13. Rice, H.G.: Classes of recursively enumerable sets and their decision problems. Trans. Am. Math. Soc. 74(2), 358–366 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  14. Schrittwieser, S., Katzenbeisser, S.: Code obfuscation against static and dynamic reverse engineering. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 270–284. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24178-9_19

    Chapter  Google Scholar 

  15. Schrittwieser, S., Katzenbeisser, S., Kinder, J., Merzdovnik, G., Weippl, E.: Protecting software through obfuscation: Can it keep pace with progress in code analysis? ACM Computing Surveys (CSUR) 49(1), 4 (2016)

    Article  Google Scholar 

  16. Wang, C., Hill, J., Knight, J., Davidson, J.: Software tamper resistance: obstructing static analysis of programs. Technical Report CS-2000-12, University of Virginia, 12 2000 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Koscina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Géraud, R., Koscina, M., Lenczner, P., Naccache, D., Saulpic, D. (2017). Generating Functionally Equivalent Programs Having Non-isomorphic Control-Flow Graphs. In: Lipmaa, H., Mitrokotsa, A., Matulevičius, R. (eds) Secure IT Systems. NordSec 2017. Lecture Notes in Computer Science(), vol 10674. Springer, Cham. https://doi.org/10.1007/978-3-319-70290-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70290-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70289-6

  • Online ISBN: 978-3-319-70290-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics