Advertisement

Existential Assertions for Voting Protocols

  • R. Ramanujam
  • Vaishnavi Sundararajan
  • S. P. SureshEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10323)

Abstract

In [21], we extended the Dolev-Yao model with assertions. We build on that work and add existential abstraction to the language, which allows us to translate common constructs used in voting protocols into proof properties. We also give an equivalence-based definition of anonymity in this model, and prove anonymity for the FOO protocol.

References

  1. 1.
    Adida, B.: Helios: web-based open-audit voting. In: Proceedings of 17th Conference on Security Symposium (SS 2008), pp. 335–348 (2008)Google Scholar
  2. 2.
    Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Analysing unlinkability and anonymity using the applied Pi calculus. In: 23rd IEEE Computer Security Foundations Symposium, pp. 107–121 (2010)Google Scholar
  3. 3.
    Butin, D., Gray, D., Bella, G.: Towards verifying voter privacy through unlinkability. In: Jürjens, J., Livshits, B., Scandariato, R. (eds.) ESSoS 2013. LNCS, vol. 7781, pp. 91–106. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36563-8_7 CrossRefGoogle Scholar
  4. 4.
    Backes, M., Hritcu, C., Maffei, M.: Type-checking zero-knowledge. In: Proceedings of 15th ACM CCS, pp. 357–370 (2008)Google Scholar
  5. 5.
    Backes, M., Maffei, M., Unruh, D.: Zero-knowledge in the applied Pi-calculus and automated verification of the direct anonymous attestation protocol. In: IEEE Symposium on Security and Privacy, pp. 202–215 (2008)Google Scholar
  6. 6.
    Boureanu, I., Jones, A.V., Lomuscio, A.: Automatic verification of epistemic specifications under convergent equational theories. In: Proceedings of 11th AAMAS, pp. 1141–1148 (2012)Google Scholar
  7. 7.
    Baskar, A., Ramanujam, R., Suresh, S.P.: A dexptime-complete Dolev-Yao theory with distributive encryption. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 102–113. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15155-2_11 CrossRefGoogle Scholar
  8. 8.
    Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, Boston (1983).  https://doi.org/10.1007/978-1-4757-0602-4_18 CrossRefGoogle Scholar
  9. 9.
    Cortier, V., Smyth, B.: Attacking and fixing Helios: an analysis of ballot secrecy. In: Proceedings of Computer Security Foundations Symposium, pp. 297–311 (2011)Google Scholar
  10. 10.
    Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory 29, 198–208 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale elections. In: International Workshop on the Theory and Application of Cryptographic Techniques, pp. 244–251 (1992)Google Scholar
  12. 12.
    Gray, J.W., Syverson, P.F.: A logical approach to multilevel security of probabilistic systems. Distrib. Comput. 11, 73–90 (1998)CrossRefGoogle Scholar
  13. 13.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78967-3_24 CrossRefGoogle Scholar
  14. 14.
    Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent systems. J. Comput. Secur. 13(3), 483–514 (2005)CrossRefGoogle Scholar
  15. 15.
    Hughes, D., Shmatikov, V.: Information hiding, anonymity and privacy: a modular approach. J. Comput. Secur. 12(1), 3–36 (2004)CrossRefGoogle Scholar
  16. 16.
    Kremer, S., Ryan, M.: Analysis of an electronic voting protocol in the applied Pi calculus. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 186–200. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-31987-0_14 CrossRefGoogle Scholar
  17. 17.
    Lafourcade, P., Lugiez, D., Treinen, R.: Intruder deduction for the equational theory of Abelian Groups with distributive encryption. Inf. Comput. 205(4), 581–623 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Maffei, M., Pecina, K., Reinert, M.: Security and privacy by declarative design. In: IEEE 26th CSF Symposium, pp. 81–96 (2013)Google Scholar
  19. 19.
    Mauw, S., Verschuren, J., de Vink, E.P.: Data anonymity in the FOO voting scheme. In: Electronic Notes in Theoretical Computer Science, pp. 5–28 (2007)Google Scholar
  20. 20.
  21. 21.
    Ramanujam, R., Sundararajan, V., Suresh, S.P.: Extending Dolev-Yao with assertions. In: Prakash, A., Shyamasundar, R. (eds.) ICISS 2014. LNCS, vol. 8880, pp. 50–68. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-13841-1_4 Google Scholar
  22. 22.
    Syverson, P.F., Stubblebine, S.G.: Group principals and the formalization of anonymity. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 814–833. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48119-2_45 CrossRefGoogle Scholar

Copyright information

© International Financial Cryptography Association 2017

Authors and Affiliations

  • R. Ramanujam
    • 1
  • Vaishnavi Sundararajan
    • 2
  • S. P. Suresh
    • 2
    Email author
  1. 1.The Institute of Mathematical SciencesChennaiIndia
  2. 2.Chennai Mathematical Institute and UMI ReLaXChennaiIndia

Personalised recommendations