Simple Encrypted Arithmetic Library - SEAL v2.1

  • Hao ChenEmail author
  • Kim Laine
  • Rachel Player
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10323)


Achieving fully homomorphic encryption was a longstanding open problem in cryptography until it was resolved by Gentry in 2009. Soon after, several homomorphic encryption schemes were proposed. The early homomorphic encryption schemes were extremely impractical, but recently new implementations, new data encoding techniques, and a better understanding of the applications have started to change the situation. In this paper we introduce the most recent version (v2.1) of Simple Encrypted Arithmetic Library - SEAL, a homomorphic encryption library developed by Microsoft Research, and describe some of its core functionality.


  1. 1.
    FV-NFLlib. Accessed 17 Feb 2017
  2. 2.
    HElib. Accessed 21 Nov 2016
  3. 3.
    Albrecht, M.R.: On dual lattice attacks against small-secret LWE and parameter choices in HElib and SEAL. Cryptology ePrint Archive, Report 2017/047 (2017).
  4. 4.
    Albrecht, M.R., Cid, C., Faugère, J.-C., Fitzpatrick, R., Perret, L.: Algebraic algorithms for LWE problems. IACR Cryptology ePrint Archive 2014:1018 (2014)Google Scholar
  5. 5.
    Albrecht, M.R., Cid, C., Faugère, J.-C., Fitzpatrick, R., Perret, L.: On the complexity of the BKW algorithm on LWE. Des. Codes Crypt. 74(2), 325–354 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Albrecht, M.R., Fitzpatrick, R., Göpfert, F.: On the efficacy of solving LWE by reduction to unique-SVP. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS, vol. 8565, pp. 293–310. Springer, Cham (2014). Google Scholar
  7. 7.
    Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptol. 9(3), 169–203 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 403–415. Springer, Heidelberg (2011). CrossRefGoogle Scholar
  9. 9.
    Bajard, J.C., Eynard, J., Hasan, A., Zucca, V.: A full RNS variant of FV like somewhat homomorphic encryption schemes. Cryptology ePrint Archive, Report 2016/510 (2016).
  10. 10.
    Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. J. ACM 50(4), 506–519 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in LWE-based homomorphic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 1–13. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  12. 12.
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 309–325. ACM (2012)Google Scholar
  13. 13.
    Buchmann, J.A., Büscher, N., Göpfert, F., Katzenbeisser, S., Krämer, J., Micciancio, D., Siim, S., van Vredendaal, C., Walter, M.: Creating cryptographic challenges using multi-party computation: the LWE challenge. In: Emura, K., Hanaoka, G., Zhang, R. (eds.) Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryptography, AsiaPKC@AsiaCCS, Xi’an, China, May 30–June 03, 2016, pp. 11–20. ACM (2016)Google Scholar
  14. 14.
    Costache, A., Smart, N.P.: Which ring based somewhat homomorphic encryption scheme is best? In: Sako, K. [33], pp. 325–340Google Scholar
  15. 15.
    Costache, A., Smart, N.P., Vivek, S., Waller, A.: Fixed point arithmetic in SHE schemes. Technical report, Cryptology ePrint Archive, Report 2016/250 (2016).
  16. 16.
    Crandall, R., Pomerance, C.: Prime Numbers: A Computational Perspective, vol. 182. Springer Science and Business Media, Heidelberg (2006). zbMATHGoogle Scholar
  17. 17.
    Crockett, E., Peikert, C.: Challenges for ring-LWE. Cryptology ePrint Archive, Report 2016/782 (2016).
  18. 18.
    Crockett, E., Peikert, C.: \(\Lambda \) \(o\) \(\lambda \): functional lattice cryptography. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016, pp. 993–1005. ACM (2016)Google Scholar
  19. 19.
    Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: Manual for using homomorphic encryption for bioinformatics. Technical report, Microsoft Research (2015).
  20. 20.
    Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive, Report 2012/144 (2012).
  21. 21.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. STOC 9, 169–178 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Guo, Q., Johansson, T., Stankovski, P.: Coded-BKW: solving LWE using lattice codes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 23–42. Springer, Heidelberg (2015). CrossRefGoogle Scholar
  23. 23.
    Halevi, S., Shoup, V.: Design and implementation of a homomorphic-encryption library (2013).
  24. 24.
    Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014). CrossRefGoogle Scholar
  25. 25.
    Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015). Google Scholar
  26. 26.
    Harvey, D.: Faster arithmetic for number-theoretic transforms. J. Symb. Comput. 60, 113–119 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Lepoint, T., Naehrig, M.: A Comparison of the homomorphic encryption schemes FV and YASHE. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 318–335. Springer, Cham (2014). CrossRefGoogle Scholar
  28. 28.
    Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011). CrossRefGoogle Scholar
  29. 29.
    Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). CrossRefGoogle Scholar
  30. 30.
    Aguilar-Melchor, C., Barrier, J., Guelton, S., Guinet, A., Killijian, M.-O., Lepoint, T.: NFLlib: NTT-based fast lattice library. In: Sako [33], pp. 341–356Google Scholar
  31. 31.
    Micciancio, D., Regev, O.: Post-quantum cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Lattice-based Cryptography. Springer, Heidelberg (2009). CrossRefGoogle Scholar
  32. 32.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, 22–24 May 2005, pp. 84–93. ACM (2005)Google Scholar
  33. 33.
    Sako, K. (ed.): CT-RSA 2016. LNCS, vol. 9610. Springer, Cham (2016). zbMATHGoogle Scholar
  34. 34.
    Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes Crypt. 71(1), 57–81 (2014)CrossRefzbMATHGoogle Scholar

Copyright information

© International Financial Cryptography Association 2017

Authors and Affiliations

  1. 1.Microsoft ResearchNew YorkUSA
  2. 2.Royal Holloway, University of LondonLondonUK

Personalised recommendations