Skip to main content

Performance Sensor for Subthreshold Voltage Operation

  • Conference paper
  • First Online:
INCREaSE (INCREaSE 2017)

Abstract

The low power quest in CMOS integrated circuits is pushing power-supply voltages to enter the subthreshold levels. The drastic power savings obtained in subthreshold voltage operation makes this an important technique to be used in battery-operated devices. However, working at subthreshold power-supply voltages, frequency operation has to be reduced, making Dynamic Voltage and Frequency Scaling (DVFS) methodologies hard to implement. In fact, existing solutions use wide safety margins and DVFS are typically implemented with static and pre-defined steps, both for the supply-voltage or the clock frequency. But changes in VDD and in clock frequency impose additional challenges, as delay faults may arise, especially in nanometer technologies. Moreover, when a PVTA (Process, power-supply Voltage, Temperature and Aging) variation occurs, circuit performance is affected and circuits are more prone to have delay-faults, especially when cumulative degradations pile up. This paper presents an improved version of the Scout Flip-Flop, the Low-power version, a performance Sensor for tolerance and predictive detection of delay-faults in synchronous digital circuits, which now can operate at power-supply subthreshold voltage levels. The sensor is based on a master-slave Flip-Flop (FF), the Scout FF, with built-in sensor functionality to locally identify critical operations, denoted here as in the eminence of an error, a performance error. The novelty of this solution is on the new architecture for sensor functionality, which allows the operation at VDDs’ subthreshold voltage levels. This feature makes Scout FF a unique solution to control DVFS and avoid delay-fault errors, allowing optimizing circuit operation and performance. To accomplish this, two distinct guard-band windows are created: a tolerance window; and a detection window. Simulations using a SPICE tool allowed characterizing the new sensor and flip-flop to work at sub-threshold voltages, and results are presented for a 65 nm CMOS technology, which uses Predictive Technology Models (PTM). The results show that the improved Scout’s version is effective on tolerance and predictive error detection, working at subthreshold voltages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yoo, H.J.: Dual vt self-timed CMOS logic for low subthreshold current multigigabit synchronous DRAM. Proc. IEEE Trans. Circ. Syst.-II: Analog Digital Sig. 45(9), 1263–1271 (September 1998)

    Google Scholar 

  2. Hanson, S., Seok, M., Sylvester, D., Blaauw, D.: Nanometer device scaling in subthreshold logic and SRAM. IEEE Trans. Electron Devices 55, 175–185 (2008)

    Article  Google Scholar 

  3. Chakraborty, S., Mallik, A., Sarkar, C.K.: Subthreshold performance of dual-material gate CMOS devices and circuits for ultra-low power analog/mixed-signal applications. IEEE Trans. Electron Devices 55(3), 827–832 (March 2008)

    Google Scholar 

  4. Do, A.V., Boon, C.C., Do, M.A., Yeo, K.S., Cabuk, A.: A subthreshold low-noise amplifier optimized for ultra-low-power applications in the ISM band. IEEE Trans. Microwave Theor. Tech. 56(2), 286–292 (February 2008)

    Google Scholar 

  5. Giustolisi, G., Palumbo, G., Criscione, M., Cutri, F.: A low-voltage low-power voltage reference based on subthreshold MOSFETs. IEEE J. Solid-State Circ. 38(1), 151–154 (January 2003)

    Google Scholar 

  6. Li, M.-Z., et al.: Sub-threshold standard cell library design for ultra-low power biomedical applications. In: Engineering in Medicine and Biology Society (EMBC) 2013 35th Annual International Conference of the IEEE, p. 1454 (2013)

    Google Scholar 

  7. Sahu, A., Eappen, G.: Sub-threshold logic and standard cell library. Int. J. Innovative Res. Sci. Eng. Technol. 3(1) (January 2014)

    Google Scholar 

  8. Martins, C.V., Semião, J., Vazquez, J.C., Champaq, V., Santos, M., Teixeira, I.C., Teixeira, J.P.: Adaptive error-prediction flip-flop for performance failure prediction with aging sensors. In: 29th IEEE VLSI Test Symposium 2011 (VTS’11), Dana Point, California, USA, 1st–5th May 2011

    Google Scholar 

  9. Martins, C., Pachito, J., Semião, J., Teixeira, I.C., Teixeira, J.P.: Adaptive error-prediction aging sensor for on-line monitoring of performance errors. In: Proceedings of the 26th Conference on Design of Circuits and Integrated Systems—DCIS’2011, Albufeira, Portugal, 16–18 Nov 2011

    Google Scholar 

  10. Ernst, D., Kim, N.S., Das, S., Pant, S., Rao, R., Pham, T., Ziesler, C., Blaauw, D., Austin, T., Flautner, K., Mudge, T.: Razor: a low-power pipeline based on circuit-level timing speculation. In: Microarchitecture, 2003. MICRO-36. International Symposium on Proceedings of 36th Annual IEEE/ACM, Dez. 2003

    Google Scholar 

  11. Das, S., Tokunaga, C., Pant, S., Ma, W.-H., Kalaiselvan, S., Lai, K., Bull, D.M., Blaauw, D.T.: RazorII: in situ error detection and correction for PVT and SER tolerance. IEEE J. Solid-State Circ. 44(1) (January 2009)

    Google Scholar 

  12. Semião, J., Cabral, R., Santos, M.B., Teixeira, I.C., Teixeira, J.P.: Dynamic voltage and frequency scaling for long-term and fail-safe operation. In: The Finale Workshop on Manufacturable and Dependable Multicore Architectures at Nanoscale (MEDIAN Finale’15), Tallinn, Estonia, 10–11 Nov 2015

    Google Scholar 

  13. Predictive Technology Model (PTM). http://www.eas.asu.edu/~ptm/

  14. Semião, J., Rodriguez-Irago, M., Piccoli, L., Vargas, F., Santos, M.B., Teixeira, I.C., Rodríguez-Andina, J.J., Teixeira, J.P.: Signal integrity enhancement in digital circuits. IEEE Des. Test Comput. 25(5), 452–461 (September–October 2008)

    Google Scholar 

  15. Agarwal, M., et al.: Circuit failure prediction and its application to transistor aging. In: Proceedings of VLSI Test Symposium (VTS), pp. 277–286 (2007)

    Google Scholar 

  16. Vazquez, J.C., et al.: Predictive error detection by on-line aging monitoring. IEEE International On-Line Testing Symposium (IOLTS) (2010)

    Google Scholar 

  17. Blaauw, D., Kalaiselvan, S., Lai, K., Ma, W.-H., Pant, S., Tokunaga, C., Das, S., Bull, D.: Razor II: in situ error detection and correction for PVT and SER tolerance. In: Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International, pp. 400–622, 3–7 Feb 2008

    Google Scholar 

  18. Semiao, J., Pachito, J., Martins, C., Jacinto, B., Vazquez, J., Champac, V., Santos, M., Teixeira, I., Teixeira, J.: Aging-aware power or frequency tuning with predictive fault detection. IEEE Des. Test Comput. 29(5) (September/October 2012). doi:10.1109/MDT.2012.2206009

  19. Tschanz, J., et al.: Adaptive frequency and biasing techniques for tolerance to dynamic temperature-voltage variations and aging. In: Proceedings of IEEE International Solid-State Circuit Conference on (ISSCC), pp. 292–293 (2007)

    Google Scholar 

  20. Gauthier, C.R., Trivedi, P.R., Yee, G.S.: Embedded integrated circuit aging sensor system. Sun Microsystems, US Patent 7054787, 30 May 2006

    Google Scholar 

  21. Kim, D., Kim, J., Kim, M., Moulic, J., Song, H.: System and method for monitoring reliability of a digital system. IBM Corp., US Patent 7495519, 24 Feb 2009

    Google Scholar 

  22. Keane, J., Kim, T., Kim, C.: An on-chip NBTI sensor for measuring PMOS threshold voltage degradation. Proceedings of International Symposium on Low Power Electronics and Design (ISLPED), pp. 189–194 (2007)

    Google Scholar 

  23. Austin, T., Blaauw, D., Mudge, T., Flautner, K.: Making typical silicon matter with razor. IEEE Comput. 37(3), 57–65 (2004)

    Article  Google Scholar 

  24. Das, S., Tokunaga, C., Pant, S., Ma, W.-H., Kalaiselvan, S., Lai, K., Bull, D., Blaauw, D.: Razorii: in situ error detection and correction for PVT and ser tolerance. IEEE J. Solid-State Circ. 44(1), pp. 32–48 (January 2009)

    Google Scholar 

  25. Omaña, M., Rossi, D., Bosio, N., Metra, C.: Low cost NBTI degradation detection and masking approaches. IEEE Trans. Comput. 62(3) (March 2013)

    Google Scholar 

  26. Lin, Y., Zwolinski, M.: SETTOFF: a fault tolerant flip-flop for building cost-efficient reliable systems. In: IEEE International On-Line Testing Symposium, pp. 7–12 (2012)

    Google Scholar 

  27. Semião, J., Freijedo, J., Rodriguez-Andina, J., Vargas, F., Santos, M.B., Teixeira, I.C., Teixeira, J.P.: Time management for low-power design of digital systems. J. Low Power Electron. Special Issue on LPonTR, 4(3) (December 2008). doi:http://dx.doi.org/10.1166/jolpe.2008.194

  28. Semião, J., Freijedo, J., Rodríguez Andina, J.J., Vargas, F., Santos, M.B., Teixeira, I.C., Teixeira, J.P.: Exploiting parametric power supply and/or temperature variations to improve fault tolerance in digital circuits. In: IOLTS 2008—14th IEEE International On-Line Testing Symposium, Rhodes, 7–9 July 2008

    Google Scholar 

  29. Semião, J., Romão, A., Saraiva, D., Leong, C., Santos, M., Teixeira, I., Teixeira, P.: Performance sensor for tolerance and predictive detection of delay-faults. In: Accepted for publication in the DFT (International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems) Symposium 2014, Amsterdam, The Netherlands, 1–3 Oct 2014. doi:http://dx.doi.org/10.1109/DFT.2014.6962092

  30. Semiao, J., Freijedo, J., Rodriguez-Andina, J.J., Vargas, F., Santos, M., Teixeira, I., Teixeira, J.P.: Delay-fault tolerance to power supply voltage disturbances analysis in nanometer technologies. In: Proceedings of the 15th IEEE International On-Line Testing Symposium (IOLTS’09), held in Sesimbra, Portugal, pp. 223–228, ISBN 978-1-4244-4822-7, 24–26 June 2009. doi:http://dx.doi.org/10.1109/IOLTS.2009.5196020

Download references

Acknowledgements

This work was supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013, and by the European Union, under the FEDER (Fundo Europeu de Desenvolvimento Regional) program, in the scope of the AGERAR (0076_AGERAR_6_E) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Semião .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cabral, R., Cavalaria, H., Semião, J., Santos, M.B., Teixeira, I.C., Teixeira, J.P. (2018). Performance Sensor for Subthreshold Voltage Operation. In: Mortal, A., et al. INCREaSE . INCREaSE 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-70272-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70272-8_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70271-1

  • Online ISBN: 978-3-319-70272-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics