Skip to main content

The Plasmonic Response of Archimedean Spirals

  • Chapter
  • First Online:
The Nanoscale Optical Properties of Complex Nanostructures

Part of the book series: Springer Theses ((Springer Theses))

Abstract

As discussed in previous chapters, FIB and lithography based synthesis techniques have been utilized to assemble complex plasmonic nanostructures, with exceptional control of the nanoscale optical. In this chapter, we examine the various fascinating properties of the plasmonic response of a metallic Archimedean nanospiral.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ozbay, E.: Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006). ISSN: 0036-8075, 1095–9203

    Google Scholar 

  2. Kuttge, M., García de Abajo, F.J., Polman, A.: Ultrasmall mode volume plasmonic nanodisk resonators. Nano Lett. 10, 1537–1541 (2009). ISSN: 1530-6984

    Google Scholar 

  3. Kuttge, M., Vesseur, E.J.R., Polman, A.: Fabry-Pérot resonators for surface plasmon polaritons probed by cathodoluminescence. Appl. Phys. Lett. 94, 183104 (2009). ISSN: 0003-6951, 1077–3118

    Google Scholar 

  4. Bosman, M., et al.: Encapsulated annealing: enhancing the plasmon quality factor in lithographically–defined nanostructures. Sci. Rep. 4, 5537 (2014/2015). ISSN: 2045-2322. https://doi.org/10.1038/srep05537. http://www.nature.com/articles/srep05537

  5. Haberfehlner, G., et al.: Correlated 3D nanoscale mapping and simulation of coupled plasmonic nanoparticles. Nano Lett. 15, 7726–7730 (2015). ISSN: 1530-6984

    Article  ADS  Google Scholar 

  6. Chamuah, N., Nath, P.: Periodically varying height in metal nano-pillars for enhanced generation of localized surface plasmon field. Plasmonics 10, 1367–1372 (2015)

    Article  Google Scholar 

  7. Lau, U.Y., Saxer, S.S., Lee, J., Bat, E., Maynard, H.D.: Direct write protein patterns for multiplexed cytokine detection from live cells using electron beam lithography. ACS Nano 10, 723–729 (2015)

    Article  Google Scholar 

  8. Jonušauskas, L., et al.: Plasmon assisted 3D microstructuring of gold nanoparticledoped polymers. Nanotechnology 27, 154001 (2016)

    Article  ADS  Google Scholar 

  9. Ziegler, J.I., Haglund, R.F.: Plasmonic response of nanoscale spirals. Nano Lett. 10, 3013–3018 (2010). ISSN: 1530-6984

    Article  ADS  Google Scholar 

  10. Davidson, I.R.B., et al.: Efficient forward second-harmonic generation from planar archimedean nanospirals. Nanophotonics 4, 108–113 (2015/2016). ISSN: 2192–8614. https://doi.org/10.1515/nanoph-2015-0002. http://www.degruyter.com/view/j/nanoph.2015.4.issue-1/nanoph-2015-0002/nanoph-2015-0002.xml?ncid=txtlnkusaolp00000603&format=INT

  11. Krasavin, A., Ginzburg, P., Wurtz, G., Zayats, A.: Nonlocality-driven supercontinuum white light generation in plasmonic nanostructures. Nat. Commun. 7, 11497 (2016)

    Article  ADS  Google Scholar 

  12. Ohno, T., Miyanishi, S.: Study of surface plasmon chirality induced by Archimedes’ spiral grooves. Opt. Express 14, 6285–6290 (2006)

    Article  ADS  Google Scholar 

  13. Tzuang, L.D.-C., et al.: Polarization rotation of shape resonance in Archimedean spiral slots. Appl. Phys. Lett. 94, 091912 (2009)

    Article  ADS  Google Scholar 

  14. Ziegler, J.I., Haglund, R.F., Jr.: Complex polarization response in plasmonic nanospirals. Plasmonics 8, 571–579 (2012). ISSN: 1557–1955, 1557–1963

    Google Scholar 

  15. Ku, C.-D., Huang, W.-L., Huang, J.-S., Huang, C.-B.: Deterministic synthesis of optical vortices in tailored plasmonic archimedes spiral. IEEE Photonics J. 5, 4800409–4800409 (2013)

    Article  Google Scholar 

  16. Tsai, W.-Y., Huang, J.-S., Huang, C.-B.: Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral. Nano Lett. 14 (2014), 547–552

    Article  ADS  Google Scholar 

  17. Chen, W., Abeysinghe, D.C., Nelson, R.L., Zhan, Q.: Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer. Nano Lett. 10, 2075–2079 (2010)

    Article  ADS  Google Scholar 

  18. Chen, C.-F., et al.: Creating optical near-field orbital angular momentum in a gold metasurface. Nano Lett. 15, 2746–2750 (2015)

    Article  ADS  Google Scholar 

  19. Osorio, C.I., Coenen, T., Brenny, B.J., Polman, A., Koenderink, A.F.: Angleresolved cathodoluminescence imaging polarimetry. ACS Photonics 3, 147–154 (2015)

    Article  Google Scholar 

  20. Fang, Y., Verre, R., Shao, L., Nordlander, P., Kall, M.: Hot electron generation and cathodoluminescence nanoscopy of chiral split ring resonators. Nano Lett. 16, 5183–5190 (2016)

    Article  ADS  Google Scholar 

  21. Bosman, M., Keast, V.J., Watanabe, M., Maaroof, A.I., Cortie, M.B.: Mapping surface plasmons at the nanometre scale with an electron beam. Nanotechnology 18, 165505 (2007). ISSN: 0957-4484, 1361-6528

    Google Scholar 

  22. Alkauskas, A., Schneider, S.D., Hébert, C., Sagmeister, S., Draxl, C.: Dynamic structure factors of Cu, Ag, and Au: comparative study from first principles. Phys. Rev. B 88 (2013), 195124

    Article  ADS  Google Scholar 

  23. Marrucci, L., Manzo, C., Paparo, D.: Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006)

    Article  ADS  Google Scholar 

  24. Yu, N., et al.: Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011)

    Article  ADS  Google Scholar 

  25. Cai, X., et al.: Integrated compact optical vortex beam emitters. Science 338, 363–366 (2012)

    Article  ADS  Google Scholar 

  26. Naidoo, D., et al.: Controlled generation of higher-order Poincaré sphere beams from a laser. Nat. Photonics 10, 327–332 (2016)

    Article  ADS  Google Scholar 

  27. Hachtel, J.A., et al.: Spatially and spectrally resolved orbital angular momentum interactions in plasmonic vortex generators. arXiv preprint. arXiv:1705.10640 (2017)

    Google Scholar 

  28. Andersen, M., et al.: Quantized rotation of atoms from photons with orbital angular momentum. Phys. Rev. Lett. 97, 170406 (2006)

    Article  ADS  Google Scholar 

  29. Padgett, M., Bowman, R.: Tweezers with a twist. Nat. Photonics 5, 343–348 (2011)

    Article  ADS  Google Scholar 

  30. Paterson, C.: Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Phys. Rev. Lett. 94, 153901 (2005)

    Article  ADS  Google Scholar 

  31. Marino, A., et al.: Delocalized correlations in twin light beams with orbital angular momentum. Phys. Rev. Lett. 101, 093602 (2008)

    Article  ADS  Google Scholar 

  32. Wang, J., et al.: Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 6, 488–496 (2012)

    Article  ADS  Google Scholar 

  33. Tamburini, F., et al.: Encoding many channels on the same frequency through radio vorticity: first experimental test. New J. Phys. 14, 033001 (2012)

    Article  ADS  Google Scholar 

  34. Bozinovic, N., et al.: Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013)

    Article  ADS  Google Scholar 

  35. Alexandrescu, A., Cojoc, D., Di Fabrizio, E.: Mechanism of angular momentum exchange between molecules and Laguerre-Gaussian beams. Phys. Rev. Lett. 96, 243001 (2006)

    Article  ADS  Google Scholar 

  36. Mondal, P.K., Deb, B., Majumder, S.: Angular momentum transfer in interaction of Laguerre-Gaussian beams with atoms and molecules. Phys. Rev. A 89, 063418 (2014)

    Article  ADS  Google Scholar 

  37. Wu, T., Wang, R., Zhang, X.: Plasmon-induced strong interaction between chiral molecules and orbital angular momentum of light. Sci. Rep. 5, 18003 (2015)

    Article  ADS  Google Scholar 

  38. Patterson, D., Schnell, M., Doyle, J.M.: Enantiomer-specific detection of chiral molecules via microwave spectroscopy. Nature 497, 475–477 (2013)

    Article  ADS  Google Scholar 

  39. Kang, M., Chen, J., Wang, X.-L., Wang, H.-T.: Twisted vector field from an inhomogeneous and anisotropic metamaterial. JOSA B 29, 572–576 (2012)

    Article  ADS  Google Scholar 

  40. Huang, L., et al.: Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 12, 5750–5755 (2012)

    Article  ADS  Google Scholar 

  41. Yin, X., Ye, Z., Rho, J., Wang, Y., Zhang, X.: Photonic spin Hall effect at metasurfaces. Science 339, 1405–1407 (2013)

    Article  ADS  Google Scholar 

  42. Gorodetski, Y., Drezet, A., Genet, C., Ebbesen, T.W.: Generating far-field orbital angular momenta from near-field optical chirality. Phys. Rev. Lett. 110, 203906 (2013)

    Article  ADS  Google Scholar 

  43. Maguid, E., et al.: Photonic spin-controlled multifunctional shared-aperture antenna array. Science 352, 1202–1206 (2016)

    Article  ADS  Google Scholar 

  44. Garoli, D., Zilio, P., Gorodetski, Y., Tantussi, F., De Angelis, F.: Optical vortex beam generator at nanoscale level. Sci. Rep. 6, 29547 (2016)

    Article  ADS  Google Scholar 

  45. Kim, H., et al.: Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens. Nano Lett. 10, 529–536 (2010)

    Article  ADS  Google Scholar 

  46. Shen, Z., et al.: Visualizing orbital angular momentum of plasmonic vortices. Opt. Lett. 37, 4627–4629 (2012)

    Article  ADS  Google Scholar 

  47. Liu, A.-P., et al.: Detecting orbital angular momentum through division-of-amplitude interference with a circular plasmonic lens. Sci. Rep. 3, 2402 (2013)

    Article  Google Scholar 

  48. Carli, M., Zilio, P., Garoli, D., Giorgis, V., Romanato, F.: Sub-wavelength confinement of the orbital angular momentum of light probed by plasmonic nanorods resonances. Opt. Express 22, 26302–26311 (2014)

    Article  ADS  Google Scholar 

  49. Garoli, D., Zilio, P., Gorodetski, Y., Tantussi, F., De Angelis, F.: Beaming of helical light from plasmonic vortices via adiabatically tapered nanotip. Nano Lett. 16, 6636–6643 (2016)

    Article  ADS  Google Scholar 

  50. Maier, S.A.: Plasmonics: Fundamentals and Applications. Springer Science & Business Media, Berlin (2007)

    Google Scholar 

  51. Kuttge, M., et al.: Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence. Phys. Rev. B 79, 113405 (2009)

    Article  ADS  Google Scholar 

  52. Yamamoto, N., Sugiyama, H., Toda, A.: Cherenkov and transition radiation from thin plate crystals detected in the transmission electron microscope. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 452, 2279–2301 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hachtel, J.A. (2018). The Plasmonic Response of Archimedean Spirals. In: The Nanoscale Optical Properties of Complex Nanostructures. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-70259-9_6

Download citation

Publish with us

Policies and ethics