Skip to main content

Advanced Electron Microscopy for Complex Nanotechnology

  • Chapter
  • First Online:
Book cover The Nanoscale Optical Properties of Complex Nanostructures

Part of the book series: Springer Theses ((Springer Theses))

  • 478 Accesses

Abstract

From this point forward, the focus of this thesis will be on electron microscopy. In this chapter, I examine complex nanostructures with applications in nanotechnology that are highly dependent on morphological, structural, compositional, and optical effects. The electron microscope is the ideal tool for this kind of analysis, and I show here a wide range of different STEM techniques that can be used to characterize complex nanotechnology with nanoscale precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Shockley, W.: Transistor technology evokes new physics. Nobel Lecture, pp. 344–374 (1956)

    Google Scholar 

  2. Brattain, W.H., Garrett, C.: Surface properties of semiconductors. Physica 20, 885–892 (1954)

    Google Scholar 

  3. Bardeen, J.: Great solid state physicists of the 20th century. Nobel Lecture, pp. 234–260 (2003)

    Google Scholar 

  4. Kilby, J.: Turning potential into reality: the invention of the integrated circuit. Nobel Lecture (2000)

    Google Scholar 

  5. Kamata, Y.: High-k/Ge MOSFETs for future nanoelectronics. Mater. Today 11, 30–38 (2008)

    Google Scholar 

  6. Brunco, D., et al.: Germanium MOSFET devices: advances in materials understanding, process development, and electrical performance. J. Electrochem. Soc. 155, H552–H561 (2008)

    Google Scholar 

  7. Kang, L., et al.: Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric. IEEE Electron Device Lett. 21, 181–183 (2000)

    Google Scholar 

  8. Lee, B.H., Kang, L., Nieh, R., Qi, W.J., Lee, J.C.: Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing. Appl. Phys. Lett. 76, 1926–1928 (2000)

    Google Scholar 

  9. Franco, J., et al.: 6Å EOT Si 0.45 Ge 0.55 pMOSFET with optimized reliability (V DD = 1V): meeting the NBTI lifetime target at ultra-thin EOT. In: Electron Devices Meeting (IEDM), 2010 IEEE International, pp. 4–11 (2010)

    Google Scholar 

  10. Mitard, J., et al.: 1mA/um-I ON strained SiGe 45%-IFQW pFETs with raised and embedded S/D. In: 2011 Symposium on VLSI Circuits-Digest of Technical Papers (2011)

    Google Scholar 

  11. Tsetseris, L., Zhou, X., Fleetwood, D., Schrimpf, R., Pantelides, S.T.: Physical mechanisms of negative-bias temperature instability. Appl. Phys. Lett. 86, 142103 (2005)

    Google Scholar 

  12. Grasser, T., Gos, W., Kaczer, B.: Dispersive transport and negative bias temperature instability: boundary conditions, initial conditions, and transport models. IEEE Trans. Device Mater. Reliab. 8, 79–97 (2008)

    Google Scholar 

  13. Grasser, T., et al.: A two-stage model for negative bias temperature instability. In: 2009 IEEE International Reliability Physics Symposium, pp. 33–44 (2009)

    Google Scholar 

  14. Campbell, J.P., Lenahan, P.M., Krishnan, A.T., Krishnan, S.: Observations of NBTI-induced atomic-scale defects. IEEE Trans. Device Mater. Reliab. 6, 117–122 (2006)

    Google Scholar 

  15. Ryan, J., Lenahan, P., Grasser, T., Enichlmair, H.: Recovery-free electron spin resonance observations of NBTI degradation. In: 2010 IEEE International Reliability Physics Symposium (IRPS), pp. 43–49 (2010)

    Google Scholar 

  16. Duan, G.X., et al.: Activation energies for oxide-and interface-trap charge generation due to negative-bias temperature stress of Si-capped SiGe-pMOSFETs. IEEE Trans. Device Mater. Reliab. 15, 352–358 (2015)

    Google Scholar 

  17. Mamouni, F.E., et al.: Fin-width dependence of ionizing radiation-induced degradation in 100-nm gate length FinFETs. IEEE Trans. Nucl. Sci. 56, 3250–3255 (2009)

    Google Scholar 

  18. Tsetseris, L., Zhou, X.J., Fleetwood, D.M., Schrimpf, R.D., Pantelides, S.T.: Hydrogen-related instabilities in MOS devices under bias temperature stress. IEEE Trans. Device Mater. Reliab. 7, 502–508 (2007)

    Google Scholar 

  19. Hikavyy, A., et al.: SiGe SEG growth for buried channels p-MOS devices. ECS Trans. 25, 201–210 (2009)

    Google Scholar 

  20. Tok, E., Ong, S., Kang, H.C.: Hydrogen desorption kinetics from the Si 1−x Ge x (100)-(2x1) surface. J. Chem. Phys. 120, 5424–5431 (2004)

    Google Scholar 

  21. Huang, X. et al.: Sub 50-nm FinFET: PMOS. In: Electron Devices Meeting, 1999. IEDM’99. Technical Digest. International, pp. 67–70 (1999)

    Google Scholar 

  22. Singh, N., et al.: High-performance fully depleted silicon nanowire (diameter 5 nm) gate-all-around CMOS devices. IEEE Electron Device Lett. 27, 383–386 (2006)

    Google Scholar 

  23. Gu, J., et al.: First experimental demonstration of gate-all-around III-V MOSFETs by top-down approach. In: 2011 IEEE International Electron Devices Meeting (IEDM), 33-2 (2011)

    Google Scholar 

  24. Shin, C.: State-of-the-art silicon device miniaturization technology and its challenges. IEICE Electron. Express 11, 20142005 (2014)

    Google Scholar 

  25. Zhang, E.X., et al.: Total ionizing dose effects on strained Ge pMOS FinFETs on bulk Si. IEEE Trans. Nucl. Sci. 64, 226–232 (2017)

    Google Scholar 

  26. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)

    Google Scholar 

  27. Dadgour, H.F., Endo, K., De, V.K., Banerjee, K.: Grain-orientation induced work function variation in nanoscale metal-gate transistors—Part I: modeling, analysis, and experimental validation. IEEE Trans. Electron Devices 57, 2504–2514 (2010)

    Google Scholar 

  28. Matsukawa, T., et al.: Suppressing Vt and Gm variability of FinFETs using amorphous metal gates for 14 nm and beyond. In: Electron Devices Meeting (IEDM), 2012 IEEE International, 8-2 (2012)

    Google Scholar 

  29. Luke, G.P., Yeager, D., Emelianov, S.Y.: Biomedical applications of photoacoustic imaging with exogenous contrast agents. Ann. Biomed. Eng. 40, 422–437 (2012)

    Google Scholar 

  30. Xu, L., et al.: Regiospecific plasmonic assemblies for in situ Raman spectroscopy in live cells. J. Am. Chem. Soc. 134, 1699–1709 (2012)

    Google Scholar 

  31. Duncan, B., Kim, C., Rotello, V.M.: Gold nanoparticle platforms as drug and biomacromolecule delivery systems. J. Control. Release 148, 122–127 (2010)

    Google Scholar 

  32. Hirsch, L., et al.: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. 100, 13549–13554 (2003)

    Google Scholar 

  33. Yu, S., et al.: Magnetic gold nanotriangles by microwave-assisted polyol synthesis. Nanoscale 7, 14039–14046 (2015). ISSN:2040-3372

    Google Scholar 

  34. Hachtel, J.A., et al.: Gold nanotriangles decorated with superparamagnetic iron oxide nanoparticles. Faraday Discussions (2016)

    Google Scholar 

  35. Egerton, R.F.: Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd edn., 491 pp. Springer, Boston (2011). ISBN:1-4419-9582-X

    Google Scholar 

  36. Williams, D.B., Carter, C.B.: Transmission Electron Microscopy, pp. 3–17. Springer, Berlin (1996)

    Google Scholar 

  37. Egerton, R.F.: Electron energy-loss spectroscopy in the TEM. Rep. Prog. Phys. 72, 016502 (2009). ISSN:0034-4885

    Article  ADS  Google Scholar 

  38. Egerton, R.: Oscillator-strength parameterization of inner-shell cross sections. Ultramicroscopy 50, 13–28 (1993)

    Article  Google Scholar 

  39. Xia, Y., Xia, X., Peng, H.-C.: Shape-controlled synthesis of colloidal metal nanocrystals: thermodynamic versus kinetic products. J. Am. Chem. Soc. 137, 7947–7966 (2015)

    Article  Google Scholar 

  40. Geuquet, N., Henrard, L.: EELS and optical response of a noble metal nanoparticle in the frame of a discrete dipole approximation. Ultramicroscopy 110, 1075–1080 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hachtel, J.A. (2018). Advanced Electron Microscopy for Complex Nanotechnology. In: The Nanoscale Optical Properties of Complex Nanostructures. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-70259-9_4

Download citation

Publish with us

Policies and ethics